Problems and Results on Additive Properties of General Sequences, V

By

P. Erdös, A.Sárközy and V.T. Sós, Budapest

(Received 17 January 1986)
Dedicated to our friend Professor E. Hlawka on the occasion of his seventieth birthday

Abstract

A very special case of one of the theorems of the authors states as follows: Let $1 \leqslant a_{1} \leqslant a_{2} \leqslant \ldots$ be an infinite sequence of integers for which all the sums $a_{i}+a_{j}, 1 \leqslant i \leqslant j$, are distinct. Then there are infinitely many integers k for which $2 k$ can be represented in the form $a_{i}+a_{j}$ but $2 k+1$ cannot be represented in this form. Several unsolved problems are stated.

1. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ be an infinite sequence of positive integers. We denote the complement of A by \bar{A} :

$$
\bar{A}=\{0,1,2, \ldots\}-A .
$$

Put

$$
A(n)=\sum_{\substack{a \leqslant n \\ a \in A}} 1, \quad \bar{A}(n)=\sum_{\substack{a \leqslant n \\ u \neq A}} 1,
$$

and for $n=0,1,2, \ldots$ let $R_{1}(n), R_{2}(n), R_{3}(n)$ denote the number of solutions of

$$
\begin{gather*}
a_{x}+a_{y}=n, \quad a_{x} \in A, a_{y} \in A \tag{1}\\
a_{x}+a_{y}=n, \quad x<y, a_{x} \in A, a_{y} \in A \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{x}+a_{y}=n, \quad x \leqslant y, a_{x} \in A, a_{y} \in A, \tag{3}
\end{equation*}
$$

respectively.
In the first four parts of this series (see [3], [4], [5] and [6]) we studied the regularity properties of the functions $R_{1}(n), R_{2}(n)$ and $R_{3}(n)$. In
particular, in Part IV, we studied the monotonicity properties of these functions. We proved that the function $R_{1}(n)$ is monotone increasing from a certain point on, i.e., there exists an integer n_{0} with

$$
R_{1}(n+1) \geqslant R_{1}(n) \text { for } n \geqslant n_{0}
$$

if and only if the sequence A contains all the integers from a certain point on, i.e., there exists an integer n_{1} with

$$
A \cap\left\{n_{1}, n_{1}+1, n_{1}+2, \ldots\right\}=\left\{n_{1}, n_{1}+1, n_{1}+2, \ldots\right\} .
$$

Furthermore, we proved that the function $R_{2}(n)$ can be monotone increasing also in a nontrivial way: namely, there exists a sequence A such that

$$
A(n)<n-c n^{1 / 3}
$$

(so that $\bar{A}(n)>c n^{1 / 3}$) and $R_{2}(n)$ is monotone increasing from a certain point on. Finally, we showed that if $A(n)=o\left(\frac{n}{\log n}\right)$, then the functions $R_{2}(n)$ and $R_{3}(n)$ cannot be monotone increasing. (See [1], [2] and [7] for other related problems and results.)

The purpose of this paper is to prove a result of independent interest on the connection between $R_{3}(2 k)$ and $R_{3}(2 k+1)$ (see Theorem 1 below) which will enable us to improve on our earlier estimates concerning the monotonicity of $R_{3}(n)$ (see Corollary 1 below).

Theorem 1. If $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ is an infinite sequence of positive integers such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\bar{A}(n)}{\log n}=\lim _{n \rightarrow+\infty} \frac{n-A(n)}{\log n}=+\infty \tag{4}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \sup \sum_{k=1}^{N}\left(R_{3}(2 k)-R_{3}(2 k+1)\right)=+\infty . \tag{5}
\end{equation*}
$$

(So that, roughly speaking, $a_{x}+a_{y}$ assumes more even values than odd ones.) Clearly, this theorem implies that

Corollary 1. ${ }^{1}$ If $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ is an infinite sequence of positive integers such that (4) holds, then the function $R_{3}(n)$

[^0]cannot be monotone increasing from a certain point on, i.e., there does not exist an integer n_{2} with
$$
R_{3}(n+1) \geqslant R_{3}(n) \text { for } n \geqslant n_{2} .
$$

We recall that in [6] we proved this with the much stronger assumption $A(n)=o\left(\frac{n}{\log n}\right)$ in place of (4). This result seems to suggest that, contrary to our earlier conjecture, also $R_{3}(n)$ can be monotone increasing only in the trivial way but unfortunately we have not been able to prove this.

A sequence $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ of positive integers is said to be a Sidon sequence if $R_{3}(n) \leqslant 1$ for all n, i.e., if

$$
a_{x}+a_{y}=a_{u}+a_{v}, x \leqslant y, u \leqslant v
$$

implies that $x=u, y=v$. (We remark that very little is known on the properties of Sidon sequences; see eg. [7].) Theorem 1 implies trivially that

Corollary 2. If A is an infinite Sidon sequence, then there exist infinitely many integers k such that $R_{3}(2 k)=1$ and $R_{3}(2 k+1)=0$, i.e., $2 k$ can be represented in the form

$$
a_{i}+a_{j}=2 k
$$

but

$$
a_{x}+a_{y}=2 k+1
$$

is not solvable.
(In fact, it can be shown by analyzing the proof of Theorem 1 that there exist infinitely many positive integers N such that the assertion of Corollary 2 holds for $\gg A(N)$ integers k with $k \leqslant N$.)

Theorem 1 is near the best possible as the following results shows:
Theorem 2. There exists a sequence $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ of positive integers such that for some positive real numbers c, n_{3} we have

$$
\begin{equation*}
\bar{A}(n)>c \log n \quad\left(\text { for } n>n_{3}\right) \tag{6}
\end{equation*}
$$

[^1]and
\[

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \sup \sum_{k=1}^{N}\left(R_{3}(2 k)-R_{3}(2 k+1)\right)<+\infty . \tag{7}
\end{equation*}
$$

\]

2. The proof of Theorem 1 will be based on the following idea: If A is a finite sequence of positive integers, and we denote the number of even elements and odd elements of it by A_{0} and A_{1}, respectively, then the sum in (5) can be estimated in the following way:

$$
\begin{gathered}
\sum_{k=1}^{+\infty}\left(R_{3}(2 k)-R_{3}(2 k+1)\right)=\sum_{k=1}^{+\infty} R_{3}(2 k)-\sum_{k=1}^{+\infty} R_{3}(2 k+1)= \\
=\sum_{\substack{a \in A, a^{\prime} \in A \\
a \leq a^{\prime} \\
a+a^{\prime} \equiv 0(\bmod 2)}} 1-\sum_{\substack{a \in A, a^{\prime} \in A \\
a<a^{\prime} \\
a+a^{\prime} \equiv 1(\bmod 2)}} 1=\frac{1}{2} \sum_{\substack{a \in A, a^{\prime} \in A \\
a+a^{\prime} \equiv 0(\bmod 2)}} 1+\frac{1}{2} \sum_{a \in A} 1- \\
-\frac{1}{2} \sum_{\substack{a \in A, a^{\prime} \in A \\
a+a^{\prime} \equiv 1(\bmod 2)}} 1= \\
=\frac{1}{2}\left(A_{0}^{2}+A_{1}^{2}\right)+\frac{1}{2}\left(A_{0}+A_{1}\right)-\frac{1}{2}\left(A_{0} A_{1}+A_{1} A_{0}\right)= \\
=\frac{1}{2}\left(A_{0}-A_{1}\right)^{2}+\frac{1}{2}\left(A_{0}+A_{1}\right) \geqslant \frac{1}{2}\left(A_{0}+A_{1}\right)
\end{gathered}
$$

which tends to infinity if the cardinality $\left(=A_{0}+A_{1}\right)$ of the sequence A tends to infinity. However, of course, the situation is much more complicated for infinite sequences.

For $-1<r<+1$, put

$$
f(r)=\sum_{a \in A} r^{a}
$$

so that

$$
f^{2}(r)=\left(\sum_{a \in A} r^{\sigma}\right)\left(\sum_{a^{\prime} \in A} r^{a}\right)=\sum_{a \in A, a^{\prime} \in A} r^{a+a^{\prime}}\left(=\sum_{n=1}^{+\infty} R_{1}(n) r^{n}\right)
$$

and hence

$$
\begin{gathered}
\sum_{n=1}^{+\infty} R_{3}(n) r^{n}=\sum_{\substack{a \in A, a^{\prime} \in A \\
a \leqslant a^{\prime}}} r^{a+a^{\prime}}= \\
=\frac{1}{2} \sum_{a \in A, a^{\prime} \in A} r^{a+a^{\prime}}+\frac{1}{2} \sum_{a \in A} r^{2 a}=\frac{1}{2}\left(f^{2}(r)+f\left(r^{2}\right)\right) .
\end{gathered}
$$

(Note that here and in what follows all the infinite power series are absolutely convergent trivially for $-1<r<+1$.)

For $-1<r<+1$, put

$$
\begin{equation*}
g(r)=\sum_{n=1}^{+\infty} R_{3}(n) r^{n}=\frac{1}{2}\left(f^{2}(r)+f\left(r^{2}\right)\right) \tag{8}
\end{equation*}
$$

and

$$
h(r)=\sum_{k=1}^{+\infty}\left(R_{3}(2 k)-R_{3}(2 k+1)\right) r^{2 k+1} .
$$

Then for $0<r<1$ we have

$$
\begin{gather*}
h(r)=r \sum_{k=1}^{+\infty}\left(R_{3}(2 k) r^{2 k}-\sum_{k=1}^{+\infty} R_{3}(2 k+1) r^{2 k+1}=\right. \\
=r \sum_{n=1}^{+\infty} \frac{1}{2} R_{3}(n)\left(r^{n}+(-r)^{n}\right)-\sum_{n=1}^{+\infty} \frac{1}{2} R_{3}(n)\left(r^{n}-(-r)^{n}\right)= \tag{9}\\
=-\frac{1}{2}(1-r) \sum_{n=1}^{+\infty} R_{3}(n) r^{n}+\frac{1}{2}(1+r) \sum_{n=1}^{+\infty} R_{3}(n)(-r)^{n}= \\
=-\frac{1}{2}(1-r) g(r)+\frac{1}{2}(1+r) g(-r) .
\end{gather*}
$$

To prove (5), it is enough to show that

$$
\begin{equation*}
\lim _{r \rightarrow 1-0} \sup h(r)=+\infty \tag{10}
\end{equation*}
$$

In fact, if we start from the indirect assumption that (5) does not hold, then there exists a positive real number B such that

$$
\sum_{k=1}^{N}\left(R_{3}(2 k)-R_{3}(2 k+1)\right) \leqslant B \text { for } N=1,2, \ldots,
$$

and hence for all $0<r<1$,

$$
\begin{aligned}
\frac{1}{1-r} h(r) & =\sum_{i=0}^{+\infty} r^{i} \sum_{k=1}^{+\infty}\left(R_{3}(2 k)-R_{3}(2 k+1)\right) r^{2 k-1}= \\
& =\sum_{n=0}^{+\infty} \sum_{k=1}^{[(n-1) / 2]}\left(R_{3}(2 k)-R_{3}(2 k+1)\right) r^{n} \leqslant \\
& \leqslant \sum_{n=0}^{+\infty} B r^{n}=B \sum_{n=0}^{+\infty} r^{n}=\frac{B}{1-r}
\end{aligned}
$$

so that

$$
h(r) \leqslant B
$$

which contradicts (10).

In view of (8) and (9), clearly we have

$$
\begin{align*}
4 h(r) & =-2(1-r) g(r)+2(1+r) g(-r)= \\
& =-(1-r)\left(f^{2}(r)+f\left(r^{2}\right)\right)+(1+r)\left(f^{2}(-r)+f\left(r^{2}\right)\right)= \tag{11}\\
& =-(1-r) f^{2}(r)+2 r f\left(r^{2}\right)+(1+r) f^{2}(-r) \geqslant \\
& \geqslant-(1-r) f^{2}(r)+2 r f\left(r^{2}\right) .
\end{align*}
$$

For $k=1,2, \ldots$, put $r_{k}=\exp \left(-1 / 2^{k}\right)$, so that $r_{1}<r_{2}<\ldots<1$, $\lim r_{k}=1$,
$k \rightarrow+\infty$

$$
\begin{equation*}
r_{k-1}=r_{k}^{2} \quad(\text { for } k=2,3, \ldots) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2^{k+1}}<1-r_{k}=1-\exp \left(-1 / 2^{k}\right)<\frac{1}{2^{k}} \text { for } k=1,2, \ldots, \tag{13}
\end{equation*}
$$

since

$$
\frac{x}{2}<x\left(1-\frac{x}{2}\right)=x-\frac{x^{2}}{2}<1-e^{-x}<x \text { for } 0<x<1
$$

For $k=1,2, \ldots$ we write

$$
H(k)=h\left(r_{k}\right) \text { and } F(k)=f\left(r_{k}\right) .
$$

Furthermore, we put

$$
\gamma=\lim _{k \rightarrow+\infty} \sup \left(1-r_{k}\right) F(k) \text { and } \delta=\lim _{k \rightarrow+\infty} \inf \left(1-r_{k}\right) F(k) .
$$

3. In order to derive (10) from (11), we have to distinguish four cases.

Case 1. Assume first that

$$
\begin{equation*}
\delta<1 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma>0 . \tag{15}
\end{equation*}
$$

Put $\varrho=\frac{\delta+\gamma}{2}$ so that

$$
\begin{equation*}
0<\varrho<1 \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
& \varrho=\delta=\gamma \quad \text { if } \delta=\gamma \tag{17}\\
& \delta<\varrho<\gamma \text { if } \delta<\gamma . \tag{18}
\end{align*}
$$

If (17) holds, then

$$
\lim \left(1-r_{k}\right) F(k)=\underline{o},
$$

hence in view of (14), for all $\varepsilon>0$ and $k>k_{0}(\varepsilon)$ we have

$$
\begin{equation*}
(1+\varepsilon)^{1 / 2}\left(1-r_{k-1}\right) F(k-1)>\varrho \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-r_{k}\right) F(k)<(1+\varepsilon)^{1 / 2} \varrho . \tag{20}
\end{equation*}
$$

(19) and (20) imply that

$$
\begin{equation*}
\left(1-r_{k}\right) F(k)<(1+\varepsilon)^{1 / 2} \varrho<(1+\varepsilon)\left(1-r_{k-1}\right) F(k-1) . \tag{21}
\end{equation*}
$$

If (18) holds, then by the definition of δ and γ, there exists an infinite sequence $k_{1}<k_{2}<\ldots$ of positive integers such that for $i=1,2, \ldots$,

$$
\left(1-r_{k_{2 i-1}}\right) F\left(k_{2 i-1}\right)>\varrho>\left(1-r_{k_{2}}\right) F\left(k_{2 i}\right)
$$

Then for all i, there exists an integer k with $k_{2 i-1}>k \geqslant k_{2 i}$ and

$$
\begin{equation*}
\left(1-r_{k-1}\right) F(k-1) \geqslant \varrho>\left(1-r_{k}\right) F(k) \tag{22}
\end{equation*}
$$

so that (22) holds for infinitely many positive integers k.
Either (21) holds for $k>k_{0}(\varepsilon)$ or (22) holds for infinitely many k, there exist infinitely many positive integers k with

$$
\left(1-r_{k}\right) F(k)<(1+\varepsilon)\left(1-r_{k-1}\right) F(k-1) .
$$

Hence, in view of $(12),\left(1-r_{k}\right) F(k)<(1+\varepsilon)\left(1-r_{k}^{2}\right) F(k-1)$ and

$$
\begin{equation*}
F(k)<(1+\varepsilon)\left(1+r_{k}\right) F(k-1) . \tag{23}
\end{equation*}
$$

In view of (11), (12), (20), (22) and (23), for sufficiently large k we have

$$
\begin{gathered}
4 h\left(r_{k}\right)=4 H(k) \geqslant-\left(1-r_{k}\right) f^{2}\left(r_{k}\right)+2 r_{k} f\left(r_{k}^{2}\right)= \\
=-\left(1-r_{k}\right) f^{2}\left(r_{k}\right)+2 r_{k} f\left(r_{k-1}\right)=-\left(1-r_{k}\right) F^{2}(k)+2 r_{k} F(k-1)>
\end{gathered}
$$

$$
\begin{equation*}
>-\left(1-r_{k}\right) F^{2}(k)+\frac{2 r_{k}}{(1+\varepsilon)\left(1+r_{k}\right)} F(k)> \tag{24}
\end{equation*}
$$

$$
\begin{aligned}
>-\left(1-r_{k}\right) F^{2}(k) & +\frac{1}{1+2 \varepsilon} F(k)=F(k)\left(\frac{1}{1+2 \varepsilon}-\left(1-r_{k}\right) F(k)\right)> \\
> & F(k)\left(\frac{1}{1+2 \varepsilon}-(1+\varepsilon)^{1 / 2} \varrho\right) .
\end{aligned}
$$

If ε is sufficiently small in terms of ϱ, then in view of (16) we have

$$
\begin{equation*}
\frac{1}{1+2 \varepsilon}-(1+\varepsilon)^{1 / 2} \varrho>\frac{1-\varrho}{2} . \tag{25}
\end{equation*}
$$

It follows from (24) and (25) that for infinitely many positive integers k we have

$$
4 h\left(r_{k}\right)>\frac{1-\varrho}{2} F(k)
$$

which tends to $+\infty$ as $k \rightarrow+\infty$ since clearly, for infinite sequences A we have

$$
\lim _{r \rightarrow 1-0} f(r)=+\infty,
$$

and this completes the proof of (10) in Case 1.
Case 2. Assume now that

$$
\begin{equation*}
\delta=\gamma=\lim _{k \rightarrow+\infty}\left(1-r_{k}\right) F(k)=0 . \tag{26}
\end{equation*}
$$

We are going to show that there exist infinitely many positive integers k with

$$
\begin{equation*}
F(k)<4 F(k-1) . \tag{27}
\end{equation*}
$$

In fact, let us start from the indirect assumption that there exists a positive integer K such that for $k \geqslant K$ we have $F(k) \geqslant 4 F(k-1)$ (for $k \geqslant K$).

This implies by straight induction that for $j=0,1,2, \ldots$ we have

$$
\begin{equation*}
F(K+j) \geqslant 4^{j} F(K) . \tag{28}
\end{equation*}
$$

On the other hand, for all $0<r<1$,

$$
f(r)=\sum_{a \in A} r^{a}<\sum_{n=0}^{+\infty} r^{n}=\frac{1}{1-r}
$$

so that in view of (12),

$$
\begin{gather*}
F(K+j)=f\left(r_{K+j}\right)=f\left(r_{K}^{1 / 2}\right)<\frac{1}{1-r_{K}^{1,2}}= \tag{29}\\
=\frac{1}{1-r_{K}} \cdot \frac{1-r_{k}}{1-r_{K}^{1,2}}=\frac{1}{1-r_{K}} \sum_{i=0}^{2 j-1} r_{K}^{i, 2}<\frac{1}{1-r_{K}} \sum_{i=0}^{2 /-1} 1=\frac{2^{j}}{1-r_{K}} .
\end{gather*}
$$

It follows from (28) and (29) that

$$
\frac{2^{j}}{1-r_{K}}>4^{j} F(K)=4^{j} f\left(r_{K}\right)
$$

but if j is sufficiently large in terms of r_{K}, then this inequality cannot hold (note that $0<r_{K}<1$ and that $f(r)>0$ for all $0<r<1$), and this contradiction proves the existence of infinitely many positive integers k satisfying (27).

Then in view of (12) and (26), we obtain from (11) that if k satisfies (27) and is sufficiently large,

$$
\begin{aligned}
4 h\left(r_{k}\right) & =4 H(k) \geqslant-\left(1-r_{k}\right) f^{2}\left(r_{k}\right)+2 r_{k} f\left(r_{k}^{2}\right)= \\
& =-\left(1-r_{k}\right) f^{2}\left(r_{k}\right)+2 r_{k} f\left(r_{k-1}\right)= \\
& =-\left(1-r_{k}\right) F^{2}(k)+2 r_{k} F(k-1)= \\
& =-\left(1-r_{k}\right) F(k) \cdot 4 F(k-1)+2 r_{k} F(k-1)= \\
& =F(k-1)\left(-4\left(1-r_{k}\right) F(k)+2 r_{k}\right)> \\
& >F(k-1)\left(-\frac{1}{2}+1\right)>\frac{1}{2} F(k-1)
\end{aligned}
$$

which tends to $+\infty$ as $k \rightarrow+\infty$ (since A is infinite) and this completes the proof of (10) in Case 2.
4. In order to study the cases with $\delta=1$, we introduce the following notation: we put

$$
\begin{equation*}
p(r)=\frac{1}{1-r}-f(r)=\sum_{n=0}^{+\infty} r^{n}-\sum_{a \equiv A} r^{a}=\sum_{n \in \lambda} r^{n} \tag{30}
\end{equation*}
$$

and

$$
P(k)=p\left(r_{k}\right) \quad(k=1,2, \ldots)
$$

so that

$$
\begin{align*}
& \lim _{k \rightarrow+\infty} \sup \left(1-r_{k}\right) p\left(r_{k}\right)=\lim _{k \rightarrow+\infty} \sup \left(1-\left(1-r_{k}\right) f\left(r_{k}\right)\right)= \tag{31}\\
& =1-\lim _{k \rightarrow+\infty} \inf \left(1-r_{k}\right) F(k)=1-\delta=0 \text { for } \delta=1
\end{align*}
$$

and in view of (4), for arbitrary large positive number L and for $r \rightarrow 1-0$ we have

$$
\begin{aligned}
p(r) & =(1-r)\left(\frac{1}{1-r} \sum_{n \in A} r^{n}\right)= \\
& =(1-r)\left(\sum_{i=0}^{+\infty} r^{i} \sum_{n \in A} r^{n}\right)=(1-r) \sum_{n=0}^{+\infty} \bar{A}(n) r^{n}> \\
& >(1-r)\left(O(1)+\sum_{n=1}^{+\infty} L(\log n) r^{n}\right)= \\
& =o(1)+\sum_{n=1}^{+\infty} L(\log n)\left(r^{n}-r^{n+1}\right)= \\
& =o(1)+L \sum_{n=2}^{+\infty}(\log n-\log (n-1)) r^{n}= \\
& =o(1)+L \sum_{n=2}^{+\infty}\left(\log \left(1+\frac{1}{n-1}\right)\right) r^{n}> \\
& >o(1)+c L \sum_{n=1}^{+\infty} \frac{r^{n}}{n}=o(1)+c L \log \frac{1}{1-r}
\end{aligned}
$$

(where c is a positive absolute constant). This holds for all $L>0$ whence

$$
\begin{equation*}
\lim _{r \rightarrow 1-0} p(r)\left(\log \frac{1}{1-r}\right)^{-1}=+\infty \tag{32}
\end{equation*}
$$

It follows from (13) and (32) that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{P(k)}{k} \geqslant \lim _{r \rightarrow 1-0} p\left(r_{k}\right) \log 2\left(\log \frac{1}{1-r_{k}}\right)^{-1}=+\infty . \tag{33}
\end{equation*}
$$

Finally, in view of (12), it follows from (11) and (30) that

$$
\begin{align*}
4 H(k) & =4 h\left(r_{k}\right) \geqslant-\left(1-r_{k}\right) f^{2}\left(r_{k}\right)+2 r_{k} f\left(r_{k}^{2}\right)= \\
& =-\left(1-r_{k}\right)\left(\frac{1}{1-r_{k}}-p\left(r_{k}\right)\right)^{2}+2 r_{k}\left(\frac{1}{1-r_{k}^{2}}-p\left(r_{k}^{2}\right)\right)= \tag{34}\\
& =-\frac{1}{1-r_{k}}+2 P(k)-\left(1-r_{k}\right) P^{2}(k)+\frac{2 r_{k}}{1-r_{k}^{2}}-2 r_{k} P(k-1)=
\end{align*}
$$

$$
\begin{aligned}
& =-\frac{1}{1+r_{k}}+2 P(k)-\left(1-r_{k}\right) P^{2}(k)-2 r_{k} P(k-1)> \\
& >-1+2 P(k)-\left(1-r_{k}\right) P^{2}(k)-2 P(k-1)
\end{aligned}
$$

Case 3. Assume that

$$
\begin{equation*}
\delta=1 \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \sup P(k)\left(1-r_{k}\right)^{1 / 2}>0 \tag{36}
\end{equation*}
$$

It follows from (13) and (36) that

$$
\begin{align*}
0<\lim _{k \rightarrow+\infty} \sup P(k)\left(1-r_{k}\right)^{1 / 2} & <\lim _{k \rightarrow+\infty} \sup P(k) 2^{-k / 2}< \\
& <\lim _{k \rightarrow+\infty} \sup P(k) e^{-k / 4} \tag{37}
\end{align*}
$$

We are going to show that there exist infinitely many integers k with

$$
\begin{equation*}
P(k)>e^{1 / 8} P(k-1) \tag{38}
\end{equation*}
$$

In fact, let us start from the indirect assumption that there exists a positive integer K such that for $k \geqslant K$ we have

$$
P(k) \leqslant e^{1 / 8} P(k-1) \quad(\text { for } k \geqslant K) .
$$

This implies by straight induction that for $j=0,1,2, \ldots$ we have

$$
P(K+j) \leqslant e^{j / 8} P(K),
$$

i.e.,

$$
P(k) \leqslant e^{-K / 8} e^{k / 8} P(K) \text { for } k \geqslant K
$$

hence

$$
\begin{aligned}
\lim _{k \rightarrow+\infty} \sup P(k) e^{-k / 4} & \leqslant \lim _{k \rightarrow+\infty} \sup e^{-K / 8} e^{k / 8} P(K) e^{-k / 4}= \\
& =\lim _{k \rightarrow+\infty} \sup e^{-K / 8} P(K) e^{-k / 8}=0
\end{aligned}
$$

which cannot hold by (37) and this contradiction proves the existence of infinitely many integers k satisfying (38).

Then in view of (31) and (33), we obtain from (34) that if k satisfies (38) and is sufficiently large,

$$
\begin{aligned}
4 H(k) & >-1+2 P(k)-\left(1-r_{k}\right) P^{2}(k)-2 P(k-1)> \\
& >-1+2 P(k)-\left(1-r_{k}\right) P^{2}(k)-2 e^{-1 / 8} P(k)=
\end{aligned}
$$

$$
\begin{aligned}
& =P(k)\left(-\frac{1}{P(k)}+2-\left(1-r_{k}\right) P(k)-2 e^{-1 / 8}\right) \\
& >P(k)\left(-\frac{1}{k}+2-o(1)-2 e^{-1 / 8}\right)= \\
& =P(k)\left(2\left(1-e^{-1 / 8}\right)-o(1)\right)>\left(1-e^{-1 / 8}\right) P(k)
\end{aligned}
$$

which, by (33) and $1-e^{-1 / 8}>0$, tends to $+\infty$ as $k \rightarrow+\infty$ and this completes the proof of (10) in Case 3.

Case 4 . Assume finally that $\delta=1$ and

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} P(k)\left(1-r_{k}\right)^{1 / 2}=0 . \tag{39}
\end{equation*}
$$

Then in view of (33), (34) and (39), for sufficiently large N we have

$$
\begin{aligned}
& 4 \frac{1}{N} \sum_{k=2}^{N} H(k) \geqslant \frac{1}{N} \sum_{k=2}^{N}\left(-1+2 P(k)-\left(1-r_{k}\right) P^{2}(k)-2 P(k-1)\right)> \\
& >-1+\frac{2}{N} \sum_{k=2}^{N}(P(k)-P(k-1))-\frac{1}{N} \sum_{k=2}^{N}\left(1-r_{k}\right) P^{2}(k)> \\
& >-1+2 P(N) N^{-1}-2 P(1) N^{-1}-N^{-1} \sum_{k=2}^{N}\left(P(k)\left(1-r_{k}\right)^{1 / 2}\right)^{2}> \\
& >-1+2 P(N) N^{-1}-1-N^{-1}\left(O(1)+\sum_{k=2}^{N} 1\right)> \\
& >-1+2 P(N) N^{-1}-1-2>P(N) N^{-1}
\end{aligned}
$$

which, by (33), tends to $+\infty$ as $N \rightarrow+\infty$ and this proves (10) also in Case 4 which completes the proof of Theorem 1.
5. Proof of Theorem 2. Let $B=\left\{17,64, \ldots, 4^{2 k}+1,4^{2 k+1}, \ldots\right\}$ and define the sequence A by

$$
A=\bar{B}-\{0\}=\{1,2,3, \ldots, n, \ldots\}-B .
$$

This sequence A satisfies (6) trivially. We are going to show that it satisfies also (7).

Let us write

$$
\eta(x)=\left\{\begin{array}{l}
1 \text { if } x \in B \\
0 \text { if } x \notin B
\end{array}\right.
$$

and
so that

$$
B_{0}(n)=\sum_{\substack{b \leq n, b \in B \\ b=0(\bmod 2)}} 1 \text { and } B_{1}(n)=\sum_{\substack{b \leqslant n, b \in B \\ b=1(\bmod 2)}} 1
$$

$$
B_{0}(n)+B_{1}(n)=\sum_{\substack{b \in B \\ b \leqslant n}} 1=B(n)
$$

and by the construction of the sequence B,

$$
\begin{equation*}
\left|B_{0}(n)-B_{1}(n)\right| \leqslant 1 \quad \text { for all } n \tag{40}
\end{equation*}
$$

Clearly we have

$$
\begin{aligned}
R_{3}(n) & =\sum_{i \leqslant n / 2}(1-\eta(i))(1-\eta(n-i))= \\
& =\sum_{i \leqslant n / 2} 1-\sum_{i=1}^{n-1} \eta(i)-\eta(n / 2)+\sum_{i \leqslant n / 2} \eta(i) \eta(n-i)= \\
& =\sum_{i \leqslant n / 2} 1-B(n-1)+\sum_{i<n / 2} \eta(i) \eta(n-i)
\end{aligned}
$$

Hence

$$
R_{3}(2 k)-R_{3}(2 k+1)=
$$

$$
\begin{aligned}
= & \left(\sum_{i \leqslant k} 1-\sum_{i \leqslant k+1 / 2} 1\right)+(B(2 k)-B(2 k-1))+ \\
& +\sum_{i \leqslant k-1} \eta(i) \eta(2 k-i)-\sum_{i \leqslant k} \eta(i) \eta(2 k+1-i)= \\
= & \eta(2 k)+\sum_{i \leqslant k-1} \eta(i) \eta(2 k-i)-\sum_{i \leqslant k} \eta(i) \eta(2 k+1-i)
\end{aligned}
$$

so that

$$
\begin{aligned}
& \sum_{k=1}^{N}\left(R_{3}(2 k)-R_{3}(2 k+1)\right)= \\
& =\sum_{k=1}^{N} \eta(2 k)+\sum_{k=1}^{N} \sum_{i \leqslant k-1} \eta(i) \eta(2 k-i)-\sum_{k=1}^{N} \sum_{i \leqslant k} \eta(i) \eta(2 k+1-i)= \\
& =B_{0}(2 N)+\Sigma_{1}-\Sigma_{2}
\end{aligned}
$$

where
$\Sigma_{1}=\sum_{k=1}^{N} \sum_{i \leqslant k-1} \eta(i) \eta(2 k-i)$ and $\Sigma_{2}=\sum_{k=1}^{N} \sum_{i \leqslant k} \eta_{i}(i) \eta_{1}(2 k+1-i)$.
Here Σ_{1} is the number of solutions of

$$
\begin{equation*}
b+b^{\prime}<2 N+1, b+b^{\prime} \equiv 0(\bmod 2), b<b^{\prime}, b \in B, b^{\prime} \in B \tag{42}
\end{equation*}
$$

while Σ_{2} is the number of solutions of

$$
\begin{equation*}
b+b^{\prime}<2 N+1, b+b^{\prime} \equiv 1(\bmod 2), b<b^{\prime}, b \in B, b^{\prime} \in B \tag{43}
\end{equation*}
$$

Let us define j by

$$
b_{j}<2 N+1 \leqslant b_{j+1},
$$

and let us classify the pairs satisfying (42) according to that whether $b^{\prime}<b_{j}$ or $b^{\prime}=b_{j}$. If $b^{\prime}<b_{j}$, then the pair b, b^{\prime} in (42) can be chosen in $\binom{B_{0}\left(b_{j}-1\right)}{2}$ ways from the $B_{0}\left(b_{j}-1\right)$ integers b with $b \equiv 0(\bmod 2)$, $b \leqslant b_{j}-1, b \in B$, or it can be chosen in $\binom{B_{1}\left(b_{j}-1\right)}{2}$ ways from the $B_{1}\left(b_{j}-1\right)$ integers b with $b \equiv 1(\bmod 2), b \leqslant b_{j}-1, b \in B$. Furthermore, if $b^{\prime}=b_{j}$, then b in (42) can be any of the integers b with $b \equiv b_{j}(\bmod 2), b \leqslant 2 N+1-b_{j}, b \in B$, apart from the case $2 b_{j} \leqslant$ $\leqslant 2 N+1$ when $b=b_{j}$ must not occur. Thus writing

$$
\theta_{N}= \begin{cases}1 & \text { if } \quad 2 b_{j} \leqslant 2 N+1 \\ 0 & \text { if } \quad 2 b_{j}>2 N+1\end{cases}
$$

we have

$$
\begin{equation*}
\Sigma_{1}=\binom{B_{0}\left(b_{j}-1\right)}{2}+\binom{B_{1}\left(b_{j}-1\right)}{2}+\sum_{\substack{b=b_{j}(\bmod 2) \\ b \leqslant 2 N+1-b_{j}, b \in B}} 1-\theta_{N} . \tag{44}
\end{equation*}
$$

Similarly, if $b^{\prime}<b_{j}$ in (43), then b, b^{\prime} in (43) can be any of the $B_{0}\left(b_{j}-1\right) B_{1}\left(b_{j}-1\right)$ pairs b, b^{\prime} with $b \not \equiv b^{\prime}(\bmod 2), \quad b \leqslant b_{j}-1$, $b^{\prime} \leqslant b_{j}-1, b \in B, b^{\prime} \in B$. If $b^{\prime}=b_{j}$ in (43), then b can be any integer with $b \not \equiv b_{j}(\bmod 2), b \leqslant 2 N+1-b_{j}, b \in B$ so that

$$
\begin{equation*}
\Sigma_{2}=B_{0}\left(b_{j}-1\right) B_{1}\left(b_{j}-1\right)-\sum_{\substack{b \neq b_{j}(\bmod 2) \\ b \leqslant 2 N+1-b_{j}, b \in B}} 1 . \tag{45}
\end{equation*}
$$

It follows from (41), (44) and (45) that

$$
\begin{aligned}
& \sum_{k=1}^{N}\left(R_{3}(2 k)-R_{3}(2 k+1)\right)= \\
& =B_{0}(2 N)+\left(\binom{B_{0}\left(b_{j}-1\right)}{2}+\binom{B_{1}\left(b_{j}-1\right)}{2}-B_{0}\left(b_{j}-1\right) B_{1}\left(b_{j}-1\right)\right)+ \\
& +\left(\sum_{\substack{\left.b \leqslant b_{2}, \text { mod } 2\right) \\
b \leqslant 2 N+1-b_{j}, b \in B}} 1-\sum_{\substack{b \neq b_{j}(\bmod 2) \\
b \leqslant 2 N+1-b_{j}, b \in B}} 1\right)-\theta_{N} \leqslant \\
& \leqslant \frac{1}{2}\left(B_{0}\left(b_{j}-1\right)-B_{1}\left(b_{j}-1\right)\right)^{2}+\left|B_{0}(2 N)-B_{0}\left(b_{j}-1\right)\right|+ \\
& +\frac{1}{2}\left|B_{0}\left(b_{j}-1\right)-B_{1}\left(b_{j}-1\right)\right|
\end{aligned}
$$

hence, in view of (40),

$$
\sum_{k=1}^{N}\left(R_{3}(2 k)-R_{3}(2 k+1)\right) \leqslant \frac{1}{2}+1+\frac{1}{2}=2
$$

which completes the proof of Theorem 2.

References

[1] Erdős, P.: Problems and results in additive number theory. Colloque sur la Théorie des Nombres (CBRM) (Bruxelles, 1956), 127-137.
[2] Erdös, P., and Rényi, A.: Additive properties of random sequences of positive integers. Acta Arith. 6, 83-110 (1960).
[3] Erdős, P., Sárközy, A.: Problems and results on additive properties of general sequences, I. Pacific J. Math. 118, 347-357 (1985).
[4] Erdös, P., SÁrközy, A.: Problems and results on additive properties of general sequences, II. Acta Math. Acad. Sci. Hung. To appear.
[5] Erdös, P., Sárközy, A., Sós, V.T.: Problems and results on additive properties of general sequences, III. Studia Sci. Math. Hung. To appear.
[6] Erdŏs, P., Sárközy, A., Sós, V. T.: Problems and results on additive properties of general sequences, IV. In: Number Theory, Proc., Ootacamund, India. Lect. Notes Math. 1122, pp. 85-104. Berlin-Heidelberg-New York: Springer. 1984.
[7] Halberstam, H., Roth, K. F.: Sequences. Berlin-Heidelberg-New York: Springer. 1983.
P. Erdös, A. Sárközy and V. T. Sós

Mathematical Institute
Hungarian Academy of Sciences
Reáltanoda u. 13-15
Budapest, Hungary

[^0]: ${ }^{1}$ Corollary 1 has been obtained independently by R. Balasubramanian. His

[^1]: paper contains several other related results of independent interest. His paper will appear in Acta Arithmetica.

