
PROBLEMS AND RESULTS
ON INTERSECTIONS OF SET SYSTEMS

OF STRUCTURAL TYPE

P . ERDŐS AND V .T. SóS

The study of intersection theorems for set systems was started in the
papers of [BE 1] and [EKR 1] .

In the last twenty years a fairly extended theory has developed, several
survey papers [EK 1], [K] were written . There is also a forthcoming
book [FFK 1] about extremal problems of set systems .

Intersection theorems of structural type started in the papers of
[SS 1] were followed by several others [SS 2] [SS 3] [SS 4] [R 1]
[CFGS 1] [FSS 1] . The structures considered are mostly graphs or
subsets of integers and the intersection properties are given in graph
theoretical or arithmetical terms .

The general problem is the following:
Let S be an n-element set, and J be a family of subsets of S . J will

be called the intersection family .

I. Strong intersection problem .

Let A = {A,,... , A-} be a family of subsets of S satisfying

Ar nAj EJ for I<i<j<_m .

For fixed n and J let g(n, J) denote the cardinality of the largest family
A satisfying (1) . Determine g(n ; J) .

An important subcase is the following .

II. Weak intersection problem .

Using the same notation as above, let A = {Ar ,A,__• , A-) be a family
of subsets of S satisfying the intersection conditions : for any 1 < i <
j<m .

I C Ai n A ; for some I C J .

	

(2)

Let f (n, J) denote the cardinality of the largest family A satisfying
(2) . Determine f(n,J) .
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First we mention a few results of type 1 .

Subsets of integers .

THEOREM [SS [ ]] . Let Pk denote the set of arithmetic progressions
of length >_ k and S = {1, . . . , n} . Then

2
g(n, Pk) = 24 +0(1) n2 if K >_ 2

and

g(n; Po) _ (3) +
(2)

+ n + 1 .

Remark . Curiously enough for k = 1
l\
nott even the asymptotic value of

f(n, PI) is known. A plausible guess in [SS 1] is
CONJECTURE 1 .

9(n ; Pi) _ {2} + 1 .

For results on g(n ; PI) see [SS 1] .

Graph intersection theorems .

Let G and H be graphs on the same vertex set V . Their intersection
G n H is the graph whose edge-set E(G n H) = E(G) n E(H) and whose
vertices are the elements of V incident to some edges of E(G fl H) .

Given a family L of graphs, h(n ;L) denotes the maximum number
of graphs G,, . . . , G n, defined on the same n-element vertex set Y for
which

G i n G, E L .
Here we mention some results for the case when the intersection family

is the set of all cycles.

THEOREM [SSL 41 . If n > 4 and C denotes the set of all cycles ; then

h(n ; C)
= C2~

- 2

and the only extremal system, that is the only C-intersection system
G i , . . . , G n, for N = f (n ; C) is the following one :
E(G 1 ) forms a triangle and E(G)contains E(G 1 ) and exactly one

additional edge for i = 2, . . ., (z) - 2 .
REMARK 1 : A family Gl , . . . , G N is called a strong 0-system . The
extremal system is a very stable one in the following sense .
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THEOREM [SS 4] . If G 1i . . . ,GN is a family of graphs on n vertices
which satisfy

G nGi EC for 1<i<i<N

and which is not a strong A-system

N <
1n2

+ n . (3)

In the same paper we formulate the

CONJECTURE [SS [ ]] . Let G 1i . . .,GN be a family of graphs which
satisfies the conditions of the previous theorem. Then

N < 6 n2 + 0(n) .

The above conjecture is sharp if true .

[CFGS 1] and [FSS [ ]] the following weak intersection theorem is
proved:

THEOREM A . Let S = (1, 2, . . ., n) and J k be the family of sets {a +
1 ' . . . , a + k} where k is a fixed positive integer a = 0,1, . . . , n and a + i
is taken mod n . Then

fin, J k) = 2n-k .

	

( ,l)
REMARK : 2a . It is trivial that f(n ;J_k ) >_ 2n-k : take all subsets of S
which contain {1,2, . . .,k} .

The same trivial lower bound holds whenever J contains a k-element
set .

b . If J k is the family of sets {a + 1, . . . , a + k}, where a + k < n, then
it is simpler to prove that f(n ; J k ) = 2n-k

The following intersection lemma seems to help in many intersection
problems and was used to prove the theorem above .

INTERSECTION-LEMMA [FSS 11, [CFGS 1] . Let A = {Al, . . ., A-}
be a family of subsets of S, IS I = n. Suppose A satisfies the following
intersection property.

There exists a partition s = Uv=,S. such that

Then

s(Ai n Ai) = : 1{v[A, n Ai n s. o} 1 >_ r.

63

(5)

M < ` ( 2k 2'

	

(6)2k



where

-
(k, r)

	

Z;=o (k)

	

for k - r = 2C
c

	

~t-a

	

+
~
kti~

	

for k - r = 21 + 1 .

REMARK 3 : In fact c(k, r) is the maximum number of 0-1 sequences of
length k having the property that the Hamming distance of any two is
at most k - r . The value of c(k, r) is given e .g ., in [KA 1] .

In some cases the extremal family A is a so called kernel-system which
in the weak intersection case means that

fl'•_ , Ai E J_ for 1 < i < j < m .

Obviously this condition implies the intersection property . In the
general case (strong intersection problem) (8) does not automatically
imply the intersection property, but it gives enough information to get
the extremal system .

Hypergraph intersection problem.

In this paper we shall investigate set intersection problems where the
intersection family is defined as an r-uniform hypergraph . The motiva-
tion comes from Theorem A . The problem there can be formulated as
follows:

Let H(V) be a fixed Hamiltonian cycle on the vertex set V ; IVI = n .
How large can the family A = {A,,..., A„} be, A; C V, if A; fl Aj spans
at least one edge of H for every 1 < i < j <- m?

This suggests the following setting of a general problem, which is
a subcase of the weak intersection problem . Let G'(V;J) be an r-
uniform hypergraph. The intersection family J is the edge-set of G' .
Let A = {Al_.'A-} be a family of subsets of an n-element set S D V .
Suppose A satisfies the weak intersection condition (2) .

f (n ; G') (or f (n ; J)) denotes the cardinality of the largest family
which satisfies (2) . Determine f (n ; G') .

The idea behind using different settings of the general structural in-
tersection problems is that we focus on different aspects, on different
structural properties of J which determine the order of magnitude of
f(n ; J) .

In this setting we are interested in the graph theoretical properties (of
the hypergraph G' (V ; J) relevant to the value of f(n;J) .

One would think that the size of J (i .e ., how rich the family J_ is)
has a strong effect on g(n ; J) . This is not entirely the case . Our result
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below shows that e .g ., the chromatic number, the size of the largest
independent set of G'(V ; J) are more relevant parameters . Our results
in this paper are unfortunately far from being complete, many unsolved
problems are left and we are far from the complete understanding of the
situation .

For an arbitrary G' (n ; J) we have the trivial

FACT 1 .
r 2" < f(n;G') < 22" .

The problems considered here actually refer to the determination of
lim 2-"f (n ; G) which trivially exists . First we consider the case G = GZ
(i .e ., the ordinary graphs) .

PROPOSITION 1 . Let X(G) denote the chromatic number of G(V ; J) .
If x(G) < k, then

f(n; G) < e ( 2 k 2) •2 " .

For x(G) = 2 or 3 then (9) is sharp, i .e.,

f(n;G) = 12" .

PROOF : Let Tk(nr, . . .,nk) be a complete k-chromatic graph on ni +
. . . +nk vertices, V = Uk_ 1 V;, jV,j = ni, E(Tk) = Uj#iV X Vi . Since
G C Tk (nl, . . . , nk) for some nl, . . . , nk, obviously

Now we can apply the intersection-lemma .
Suppose A = {A,,...,A-} C 2V satisfies (2) . Then for any 1 < i <

j < m

s(Ai n A;) =1j{QjAi n A; n Vt 54- 0, 1 < Q < k}j >_ 2 .

By the intersection lemma this proves (9) .
How relevant is the number of edges of G Z ? For this we have

PROPOSITION 2 . Let e(G) denote the number of edges of G. Suppose

f(n;G) < e( 2 k2) •2 " .

Then
e(G) < e(Tk(n)) .

	

(10)
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For Tk = Tk(nl, . . .,nk)

f(n;Tk) = f(n;Kk) =
e(2k2)

2n •

	

(11)

(Here Tk (n) is the Turán-graph, the complete k-chromatic graph Tk(nl,
. . . . nk) with n = nl + . . .+ nk, In ; - nj1 < 1 .)

To prove (10), observe that if e(G) > e(Tk(n)), then by Turin's theo-
rem T[1], Kk}1 C G. Let V* C V be the vertex set of a Kk}1 contained
in G . We define our family as follows :

ACA if lAf1V*l> k+3
2

Now if A, A' E A, then
JA n A' n V* j >- 2,

hence A n A' contains an edge of G . For this A we have
k}3

(k+ 1

	

1

	

n

	

C(k + 1, 2) n

	

c(k, 2) R
) 2k}1 2

	

2k}1	 2 > 2k 2

	

(12)

i> k}
a
a

REMARK 4 : Though the chromatic number is a relevant parameter it
is not the only one . This is shown by the following fact .

Let W5 be the pentagonal wheel . X(W5) = 4 and one can show that

f(n;W5) = 4 2",

while
f(n;K4) = 16 2 f(n;K3) = 42" .

The size of the largest independent set, a(G) also has an important
effect on f (n ; G). We have the following simple
PROPOSITION 3 . For any e > 0 there is a ő(E) > 0 with the following
property :

Suppose G contains a subgraph G'(V',E') of m = jV' j vertices for
which a(G') < ö~/_tn . Then

f(n;G) > (2 -e j 2" .

PROOF : Take all subsets of V containing at least -+2-+611-- vertices of V' .
Then the intersection of any two sets contains at least ö,/-m vertices, but
it spans at least one edge of G.

Remark 5. It is well known that there exists a graph G of n vertices
(n > no) which does not contain a K4 and a(G) < ó v/-n . Hence we get
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COROLLARY 1 . For any e > 0 there is a graph G containing no K4 and
for which

f (n; G) >
2
- e' 2" .

We have very few results for r > 3 . We mention only the obvious .

PROPOSITION 4 .

f(niK;+1)=
2r 2n

An :K.+2) >
r + 3 2"
r+2

REMARK : Let h(n;K3) denote the maximum cardinality of a family G
of graphs satisfying the intersection condition, that

G nGj ;?K3, 1<-i<j <m.

CONJECTURE 2 . Simonovits-Sós formulated

h(n;K3) = 82" .

In [CFGS 1] it is proved that

h(n;K3 ) < 42" .

	

(13)

If we reformulate this result in the present terminology, we arrive at
the following .

PROPOSITION 5 . For 3-uniform hypergraphs G 3 a large chromatic
number does not imply that f (n ; G 3 ) is close to 22", not even that
it is larger than 1-4 2" .

To see this let C3 be the 3-uniform hypergraph with vertex-set [V] 2
and the edge-set F(G3 ) the triples )f[V]2 forming a triangle in K on the
vertex-set V. The chromatic number of G 3 is > log n (log log n)-1 . This
follows from Schur's theorem implying that the value of the Ramsey-
number R(31, . . . 13,) is less than e r! However (13) gives (with m = ( ;))

f(-;!2) <
1
42- .

PROBLEMS
PROBLEM 1 : Is it true that for every 4-chromatic graph G not contain-
ing K4 we have

f(n;G) = 12"?
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Or perhaps the opposite is true, the set {t ( 2;,c) IXG) = 4, K4 C G} is
everywhere dense in [1 5

4 18
By Corollary 1 this is not true in general . It might be of some interest

to find the "smallest graph (i .e ., smallest chromatic number or smallest
number of edges) which contain no K4 and for which f(n;G) > á2"

PROBLEM 2 : Does there exist a graph G which contains no K3 and for
which

f(n;G) > 42"?

Perhaps the following stronger result holds . Is it true that for every
c > 0 and r there is a graph G not containing a Ct for 2 < r and for
which

f (n ; G) > 2
- c) 2"2?

PROBLEM 3 : What is the set of limit points of f(n ; G')2-"? Is it dense
in 12

1
• 11?

2

PROBLEM 4 : Call a graph G critical from below resp . from above if the
deletion resp . the addition of any edge decreases resp . increases f (n ; G) .
Obviously for k > 3 all complete k-chromatic graphs different from KA:

are critical from above . However the complete bipartite graphs are not
critical .

The complete graphs k > 4 are critical from below .
Can one characterise all critical graphs from above resp . from below

or the graphs which are critical both from above and from below?
For r = 2 we do not know any graph different from the above ones

which are critical . We know by Corollary 1 that such graphs exist . It
might be of some interest to find the smallest one . For r > 2 we have
such graphs, see Proposition 5 and Remark 7 .
PROBLEM 5 : What is the smallest number of edges of an r-uniform
hypergraph G' for which f(n ; G') > 2. 2"?

We know that f (n ; K4) = 12n and f(n ; K,3)

	

2- 21

	

2n . If we9

	

16omit an edge of K5 we get 82" and surely every H1 31 with 9 triples has
f(n;G') = 82" .
PROBLEM 6 : Which are the r-uniform hypergraphs on n vertices with
the largest number of edges for which f(n;G') = -2"? Perhaps this is
the r graph of maximal number of edges not containing a K(r)(r + 2) .
PROBLEM 7 : Is it true that for every e > 0 there is a ö(c) > 0 such that
if G has the property that for k > ko every V C V of size k contains an
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independent set in G of size > cf then

f (n ; G) < (2 - á) 2"?

(See also Proposition 3 .) It is well known that every graph not containing
a k(3) satisfies the condition of Problem 7 . Thus the answer to Problem
4 and the stronger form of Problem 2 can not both be affirmative .
PROBLEM 8: Let A = {Al,..., A,,,} be a family of subsets of {1, . . . , n} .
a) How large can m be if for 1 < i < j < m A; flAj contains a solution

of (x, y, u, v are distinct positive numbers)

X + y = u + v, (14)

a simple computation gives that m > 82", thus the extremal system
is not a kernel system .

b) How large can m be, if for 1 < i < j < m A;nAj contains a solution
of

x + y = v?

	

(15)

REMARKS : If instead of the above conditions we require a solution of

x+y+z=u+v+w

	

(16)

then the answer is (2 - 0(1)) 2" .
This follows from the known result that given at least cn1 /3 integers,

not greater than n, then there must be a solution of (16) . Hence if we
take all subsets of {l, . . . , n} of size at least

	

+ en'/', the intersectionz
of any two will be large enough to ensure a solution of (16) . Perhaps
the following little problem in combinatorial number theory is of some
interest : Let 1 < al < . . . < at < n t > e n 1 1' . Is it true that if
c > co(r) then there is always a set of 2r a t s a;, . . . . a ;, ; aj,, . . .,aj, for
which a;, + . . . + a;, = aj, + . . . + aj,, but all other subset sums formed
from a;,, . . .a ;, ; aj,, . . .,aj, are distinct?

This method does not work for (14) since there we would have to take
all sets of size at least z + (2 + c) and the number of these sets is
<(2-c)2" .

Analogous reasoning can not be used e .g ., for (15) since there is no
density theorem for x + y = v, namely there exist sequences of integers
of positive density, e .g ., the odd numbers, without containing a solution
of (15) .

Observe that the above example gives a G 3 which contains no K3 and
despite this property for every e > 0 f(n;G) > (2 - c) 2" if n > no (e) .
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