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Abstract. Let H be a fixed graph of chromatic number r. It is shown that the number of graphs on n
vertices and not containing H as a subgraph is 2 ( z)( '-•'i * O( ')). Let h,(n) denote the maximum
number of edges in an r-uniform hypergraph on n vertices and in which the union of any three edges
has size greater than 3r - 3. It is shown that h,(n) = o(n 2 ) although for every fixed c < 2 one has
lim„_ . h,(n)/n` = oo .

1. Introduction

Let H be an arbitrary graph,
I
H I denotes the number of edges ofH. Let T„(H) denote

the Turán number of H, i.e ., the maximum number of edges which a graph on n
vertices and not containing H as a subgraph may have. Let X be an n-element set
and let X = X, U . . . U X, be an arbitrary partition of X. The complete r-partite
graph K(X	Xr) consists of all edges connecting distinct X, and X, . Note that
this graph contains no K,+ , and has chromatic number r ifX; 0, i = 1, . . ., r . To
maximize IK(X,, . . ., X,)I one chooses the X ; to have as equal sizes as possible, i .e.,[
r] < IX i l <_ I r l

. Then Turán's theorem states

Theorem 1 .1 . [23] T„(K,,j = IK(X,, . . ., X,)I = 1 2), 1 -
I
+ 0(1)

/
/ . Taking all

subgraphs of K(X	X,) one obtains 2T .,(K,+l\) distinct labeled graphs on n
vertices without Kr+ , .

Definition 1 .2 . Call a graph H-free if it contains no subgraph isomorphic to H. Let
F„(H) denote the number of distinct labeled H-free graphs on n vertices . Extending
earlier results of Erdös, Kleitman and Rothschild [8] Kolaitis, Prömel and Roths-
child proved that the number of K,+ ,-free graphs is asymptotic to the number of
the r-partite graphs . This in particular implies
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Fn(K,) = 2T.,(K,)(1+0(1)) (1)

Let X(H) denote the chromatic number of H. An old result of Erdős, Stone and
Simonovits shows that T"(H) and T"(K X(H) ) are closely related.

Theorem 1 .4 . [7, 9] Set X(H) = r, r >- 3 . Then

T"(K r ) < T"(H) < (1 + o(1))T"(K,) .

	

(2)

Our first result extends (2) .

Theorem 1 .5 . Let e o be an arbitrary positive number and G an H -free graph on n
vertices . Then for n > no(co,H) one can remove less than Eon2 edges from G so that
the remaining graph is Krfree, where r = X(H) .

This may be further extended in the following way : Let Hl , Hz be two graphs .
A mapping 0 : V(H,) V(H 2 ) is called a homomorphism if {x, y}EE(Hj implies
jo(x), (1(y)} e E(H2 ) . Note that -' (x) is an independent set for all x E V(H2) . Also
if X(H,) = r then r is the smallest integer for which there exists a homomorphism
0 : H, -> Kr .

The following is a slight generalization of Theorem 1 .5 :

Theorem 1.5' . Suppose that H2 is a homomorphic image of H,, e, is an arbitrary
positive real and G is an H, free graph with n vertices . Then jbr n > n a (E O , H,) it is
possible to remove at most c o n2 edges from G so that the remaining graph is Hzfree.

0

We do not include the proof here, it uses an argument very similar to that of
the proof of Theorem 1 .5. Note also that some stronger statements of the same
flavor were obtained by Rödl [19] . The present proof is similar. Theorem 1 .5 . is
shown to imply easily :

Theorem 1 .6. Suppose X(H) = r >_ 3 . Then

F"(H) = ZT (xa(i+°(')) (3)

Note that for H = K, (3) is much weaker than (2) and this special case was already
proved in [8] .

It seems likely that

F"(H) = 2T-(')("'('))

holds for bipartite H as well. However, this is not even known for H = C4 , the cycle
of length 4 . For this case the best known upper bound (2`"''') is due to Kleitman
and Winston [15] .

Our last but probably most interesting result concerns r-uniform hypergraphs .
Recall that an r-uniform hypergraph is simply a collection of distinct r-element sets,
called edges. Let g"(v, e, r) denote the maximum number of edges in a r-uniform
hypergraph on n vertices in which the union of any e edges has size greater than v
(i .e., no v vertices span e or more edges .

"Theorem 1 .7 . Suppose r >- 3 . Then the following hold.

g"(3r - 3, 3, r) = o(n 2 ),

	

(4)
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Our proof of (4) is based on SzemerMi's uniformity lemma [22] .
Let us mention that the special case r = 3 of (4) and (5) is a celebrated result of

Ruzsa and Szemerédi [21] . However, the present proof is much simpler and probably
more insightful . In [21] it is shown that g,,(6,3,3) > nr3 (n)/100 where r3 (n) is the
maximum size of a subset A c {1, 2, . . ., n} which contains no arithmetical progres-
sion of length 3 . Thus (4) implies r3(n) = o(n).which was proved in a stronger form
by Roth [20] .

Let G = (V, E) be a graph and A, B c V be a pair of disjoint subsets of V. The
density n/' a pair (A, B) is the fraction d(A, B) = e(A, B)IIAI I BI where e(A, B) is the
number of edges with one endpoint in A and second in B and JAI, IBI denote the
ca rd inaIiIes of A and B, respectively. The pair (A, B) is called 8-uniform if for every
A' c A, B' c 13, IA'I > r:IA1, IB'1 > e IB I Id(A',B')- d(A,B)I < e holds. The partition
V = C„ U (', IJ . . . U C, is called i:-uniform if

i)

	

1C('I < r :11' 1
ii)

	

1c'1 = I( . -i = . . . = IckI

iii) all but r :

(')

of the pairs (C;, C) are e-uniform, 1 < i < j < k .

l iniformity Lemma [22] . For every c > 0 and positive integer e, there exist positive
integers no (e, r°) and m o (e, I) such that every graph with at least no (e, e) vertices has
an e-uniform partition into k classes, where k is an integer satisfying e < k <

	

/).
Ci

Another simple proof of g,,(6,3,3) = o(n2) (which is also based on [22]) was
independently found by E . Szemerédi .

2 . Proof of Theorem 1.5.

Without loss of generality assume that co < 1/r and set ( _ [1/c o ], c =
and n o(eo ) > n(e, e) . Let C o U Cl U . . . U Ck be an e-uniform partition of G(n) . Consider
the graph G with vertex set {1, 2, . . ., k} and {i,j) joined if (C, C) is an r:-uniform
pair of density at least e o /3. We prove that this graph does not contain K, as a
subgraph. This follows from the following .

Claim 2.1 . If (C„ Cl ) is c = (c o/6)' uniform for every 1 < i < j < r 1114"1 fill' 1 1 1"'Pil
induced on Ui=, C; contains all complete r-partite graphs on v points . (lit particular,

G contains H, contradicting our hypothesis .)

Proof of Claim 2 .1 . As each of the pairs (C„ C,) 1 < i < r - 1 is r :-uniform wc ran
find (1 - (r - 1)E)IC,I points in C, which are joined to at least (r. (,/3 1 :)1( 'J points
of CI for each i = 1, 2, . . ., r - 1. Take one such point x, c C, and dcnotc hv the
set of all vertices of C; which are joined to x, (i = 1, 2, . . . , r - 1). Set ('; -= r ; \ ,

we have CI >- (e o/3 - e.) J Q > ( c o/6) I C;J for every i = I , 2, . . ., r and hcnrc each of
the pairs (C„ C) I < i < j < r is (co /6)" - ' uniform . Now we take .\ , from one of t he
sets C„ C2	C, (say C,) and repeat the argument to construct sets
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of size at least (e o/6) 2 lC;l, i = 1, 2, . . ., r and with the property that x 2 is joined
to every point of U ; o j Ct 2) . Repeating this procedure v - 1 times (on i-th step using
that (eo/6)"-'(r - 1) < 1 and E o/3 - (r O /6)"- ' >- Eo/6) we can construct a sequence
of points x,, x 2 , . . ., x, which span a graph isomorphic to any complete r partite
graph on v points.

	

0

Now we can finish the proof of Theorem 1 .5 . quite easily : The number of edges
not contained in pairs with density at least c,/3 is clearly at most

k (n~k)
+ so/3

(2)
(k)2 + E (2) (k

)2
+ en2 < Eon2 .

After omission of these edges we get a graph which can be mapped on G by homo-
morphism and hence (according to Claim 2 . 1 .) does not contain K r .

	

0

3. The Proof of Theorem 1 .6.

Let x(H) = r . According to Theorem 1 .5. every graph on n points n > n o (e) not
containing H can be written as a union of a K,-free graph and c o n 2 edges. Thus the
number of such graphs is according to Theorem 1 .3. (here we could use also the

earlier, weaker result of [8]) smaller than (1 +o(1))2T"'K,)CE~ )
ZJ

. As e o can be
0

arbitrarily small we get (3) .

	

El

4. The Proof of the First Part of Theorem 1 .7 .

We prove (4) in the following form : For every e, > 0 there exists n, = n, (E,) so that
if n > n, and G = ( V, E) is an r-uniform hypergraph with I VI = n and with the
property that every set of 3r - 3 vertices spans at most two r-tuples, then I EI < E, n 2 .
First we show that the statement holds (with n, replaced by n 2 ) if G is connected .
Consider the graph G = ( V, F) defined by

F =I {x,Y}, 3Z1, Z2~ . . ., Zr-2~X, Y, Z,, Z 2 , . . ., Zr-2) EE)

As there is no triangle with all three edges in different r-tuples (this would yield
(3r - 3, 3) a subgraph of 3 edges on 3r - 3 points) we infer that

i) The set of r-tuples of G = the set of r cliques of G .
Moreover, as G is connected we get that

ü) Every two r-cliques of G intersect in at most one point (Otherwise we get an
(e, 2), e < 2r - 2 the vertices of which cannot be contained in any other clique since
this would immediately yield (3r - 3,3)) .

Set H = K	2 (a complete r-partite graph with r + 1 points) G does not
contain H for otherwise we would get (by i)) two r-tuples intersecting in r - 1 points
which contradicts to ü). If n 2 > no (e 1 ) we get (using Theorem 1 .5 .) that there are
& 1 n 2 edges which if omitted destroy all cliques of size r. Hence by i) and ü) i E~ < E, n 2 .

Set now n, = 1 n 2 and suppose that the sizes of the vertex set of the connected
E,

components of G are m, , m2, . . . , ni p . Let 1 c { 1, 2, . . ., p) be the set of those i for
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which m. > n ; . Then we eet

IE I <_
s, m? + Y, m? <- e, n 2

5. The Proof of the Lower Bound in Theorem 1 .7 .

For the proof of (5) we need the following statement .

Lemma 5.1 . There exists a set of positive integers A c { 1, 2, . . ., n} not containing

three terms of any arithmetical progression of length r and such that IA1 >	
n

e c log rJlog n
for some absolute constant c > 0 .

The proof is based on the method developed by Behrend [2] . For d >_ 2, e >- 1
we may write any a, 1 < a <- n to the base 2rd

a = a o + a,(2dr) + a 2(2dr) 2 + • • • + a,i (2dr)k

Set N(á) _ ( 1] a, / 1 ~2 , where á = (a,, a,, . . . , a,i ) . For s >- 1 set
í-O

A = An,,,S = {a, l < a < n, 0 <_ a i < d for all i, (N(á))2 = s}

First we prove the following.

Claim 5.2 . The set A contains no three terms of any arithmetical progression of
length r .

Proof. Suppose that A contains three distinct positive integers a = a,(2dr)`, b =
Y b i(2dr)`, c = E ci(2dr)` such that r, (b - c) = r2(c - a), where r,, r 2 are positive
integers smaller than r . Then r2a + r, b - (r, + r2 ) c = 0. Since a,, b i , c ; < d there is
no carrying in r2 a, + r, b, or (r, + r2)ci for 0 < i < k and hence

r2a,+r,b,-(r,+r2)c i = 0for0<-i<k .

Then

0 <r2(a i - ci)2 +	r, (bi - Ci ,2
r, + r2

	

r, + r

	

J2

	 r2a2+ r,b2-c?
r, + r2

	

r, + r2
which yíelds that

s = (Nre» 2 <r2(N(á»2 +r,(N(b»I = s11

	

r, + r2

	

r, + r2

a contradiction.

Now we finish the proof of the Lemma . For a given r and d

k ti lg(2dr) holds .

o
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r all c cnntninc:

all sums I a;(2dr)' < n, 0 < a ; < d. This is approximately n(2r)_
k
elements .

Consequently for some s
n

~A , , d 2k(2r )k

Setting d = e l" 9 "(k flog n) we infer

for some c > 0 .

Now we prove (5). Take r-copies X o , X,, . . ., Xr_, of X = {1, 2, . . ., m), where
m = [n/rJ and consider the set of all r-tuples {x,x + a, . . ., x + (r - 1)a}, where
x + is e X; for all i = 0, 1, . . . , r - 1 . We have clearly JPJ > n 2- E for every e > 0 and
n >- no (e) . Moreover, IPr1P' I <_ I for all distinct P, P'eY . Suppose that there are
P,= {x,x+a, . . . .x+(r-I)a}, P2={y,y+b, . . .,y+(r-1)b) and P3 ={z .
z + c, . . ., z + (r - 1)c) E-ail such that jU3, Pi l <- 3r - 3. Then there exist i, j, k (cf.
Fig. 1) such that

We infer that
(i -j)a + (k - i)b = (k -j)c

which contradicts to the choice of the set A .

	

[]

6. Remarks and Open Problems

The first question which comes to mind is whether Theorem 1 .5 . can be generalized
to hypergraphs let K,(1, r) denote the t-partite complete r-graph having vertex set
X, U . . . U X, with JXJ = I and F, JFJ = r being an edge if and only if IF n X,I < 1
for i = 1, . . ., 1. That is K,(1, r) is empty for r > t, KJ1, r) is just K,(r), the complete
r-graph on t vertices .

Problem 6 .1 . Suppose H is a KJ1,r)-free r-uniform hypergraph on n vertices, t > r .
Let E be an arbitrarily small positive real n > no (E, r, t,1) . Is it possible to remove En'
edges from H so that the remaining hypergraph is K,(r)free?

A positive answer would imply that the logarithmically asymptotic number of
K l (1, r)-free r-uniform hypergraphs is the same as the number of those without Kjr)
for t > r, i .e ., it would extend Theorem 1 .6. This number should certainly be
2(1+o(1 )) r„lx,lrll Let us mention, however, that the determination of T"(K,(r)) appears
to be a very difficult problem - it is Turán's problem (cf, [4, 5, 13] for more
information).

n
re c log r~/ log n

x+ia=y+ib

z+jc=x+ja

y+kb=z+kc

l]
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Ppr,'
Fig . 1

Let c be a positive real and G a graph on n vertices and with at least cn 2 edges
in which every edge is contained in a triangle . Szemerédi (unpublished) proved that
for every integer 1 and n > n o (c,1) there is an edge in G which is contained in at
least 1 triangles . This follows also easily from Theorem 1 .5 choosing r = 3 and H
the union of I triangles sharing an edge . On the other hand Alon [1] proved that
the same statement does not hold for c sufficiently small and 1 = n* .

The investigation of the function g„(v, e, r) goes back to Erdös [6]. Actually, the
value of g,,(3,3,2) was already determined - although in different notation - by
Mantel [17] in 1907. The value is [n 2/4] .

The exact and even asymptotic value of g,(4,4,2) is unknown . It is only known
that g,(4,4,2) = Q(n3J2 ); note that f(n) = Q(g(n)) means that cl < f(n)/g(n) < c 2
holds for positive absolute constants c,, c2 and for n sufficiently large (cf [10] for
more problems and results concerning the r = 2 case .

The general problem was first considered by Brown, Erdös and Vera Sós [3] .

Very little is known for r >- 3 . Obviously, g„ I v,
\v

, r = T„(K„ (r) ) holds, i .e .,
\ r

the complete determination of g,#, e, r) would include solving Turán's problem .
Even the determination of g„(r + 1, 2, r) is difficult . It is the maximum number

of r-element subsets of an n-set no two sharing r - 1 points. This yields the upper

bound g„ (r + 1, 2, r) <

	

n

	

r, with equality iff there exists a S(n, r, r - 1) Steiner-
r- 1)/

system . Note that it is well-known that g„ (r + 1, 2, r) >- (1 - o(l))

	

n

	

r - cf.
r-1

[18] for a general asymptotic bound .
For v = r + 1, e = 3, r >- 3 not even asymptotic bounds are known . It was

* The problem of estimating f (n, e - the maximal number of triangles which must share an edge
in any graph G with above properties was proposed by P. Erdös and B.L. Rothschild.

X ;



120

	

P. Erdős, P . Frankl, V . Rödl

shown by Giraud F141 nn .-I k-

gn(4, 3, 3) >
(7

- 0(1)
)(3 )

.

On the other hand de Caen [5] proved g,(4,3,3) < l3
+ 0(1)) (3) .

Theorem 1 .7 shows that g n(3r - 3, 3, r) E)(n`) for any c. The same might hold
for g n (e(r - 2) + 3, e, r), 2, r >- 3, in general .

Problem 6.2. Is it true in general that for all ~, r >_ 3 and e > 0
n2-e < gn(((r - 2) + 3, t, 3) = o(n2 ) holds for n > no (e, e, r)?

By a construction of Ruzsa [21] g n (7, 4, 3) > n 2- E holds for all e > 0, n > n o (e) .
However, to prove gn(7, 4, 3) = o(n 2 ) appears to be difficult .

The proof of Theorem 1 .7. implies that if a 4-uniform hypergraph on n vertices
has more than en 2 edges, n > no(e) then it either contains an (11,4 or a (16,6).

An apparently easier case is the following .

Proposition 6.3. gn(2 + (r - 2)e, e, r) = e(n 2)

Sketch of proof. The upper bound follows by noting that through given two vertices
there are at most e - 1 edges. The lower bound can be proved both by direct
construction or by a random choice of cn2 subsets of size r and then omitting all
edges from every (2 + (r - 2)e)-element set containing at least e of them .

	

[]
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Remark added in proof. Problem 6 .1 has been recently positively answered by P . Frankl and
V. Rödl . The proof uses an extension of Szeinerédi's regularity lemma to hypergraphs .
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