\boldsymbol{k}-Connectivity in Random Craphs

P. Erioös anid J. W. Kenni:iy

I. Introduletion

Motivated by applications of evolving random graphs as models for phase transitions in physical systems [1, 2, 3, 4], problems were posed [5] concerning threshold functions for the appearance of giant k-connected subgraphs in random graphs, random f-graphs ri.e. random graphs with maximum vertex degree f), and random lattice-graphs (i.c. random graphs restricted to be embeddable [6] in some lattice-graph). For more details about these classes of random graphs see [2] or [4].

We present here a solution to the problem for the first two classes of random graphs and for all $k=1,2, \ldots$. The problem concerning random lattice-graphes remains open.

2. Raniom Graphs ani Raniom f-Grapis

We employ random graph in the sense of Erdös and Rényi [7]. that is a graph R_{n}, selected with equal probability from among the $\binom{\binom{n}{2}}{N}$ graphs on n (labelled) points and with N edges. It is the statistical properties as the random graph evolves (i.e. as N increases) in the asymptotic limit $n \rightarrow \infty$ that are of interest.

An f-graph is a graph with maximum degree $\leqslant f$. \wedge random f-graph $R_{i f, n, n}$ is defined analogously to $R_{n, N}$ but is subject to the constraint that no vertex has degree $>f$. That is. $R_{(f, n, v}$ is a graph selected with equal probability from among the $1 ;(n, N) f$-graphs on n (labelled) points and with N edges. Since the number $1 ;(n, N)$ is an unsolved problem (see e.g. [8]), for practical purposes we may adapt one of the operational formulations of $R_{n, 1}$ as a stochastic process (see e.g. [7b]) to the degree restricted case. Random f-graphs are of interest as chemical models where degree restrictions are imposed by bonding considerations [2, 3].

It has been shown [cf. 2] that the vertex degree distribution in $R_{1, /}$ has probability generating function ($\mathrm{pg} f$):

$$
\begin{equation*}
F_{0}(\theta)=\left(1-a+a(1)^{\prime}=\sum_{i=11}^{\prime}\binom{f}{j}(1-a)^{\prime} a^{\prime} a^{\prime} \theta^{\prime} .\right. \tag{1}
\end{equation*}
$$

that is, the probability that a random point in R_{f}, has degrec j is the coefficient of 0^{\prime} in $F_{n}(0)$. where in the asymptotic limit $n \rightarrow \infty$:

$$
\begin{equation*}
a \sim \frac{2 N}{n f}=\text { probability of an cdge in } R_{t, 1} . \tag{2}
\end{equation*}
$$

Let d he the mean vertex degree in $R_{1, \prime}$, then:

$$
\begin{equation*}
d=\frac{2 N}{n} \sim d f \tag{3}
\end{equation*}
$$

In the double limit that $f \rightarrow x$ and $a \rightarrow 0$, but such that the mean vertex degree d is preserved, degree restrictions are removed and $R_{\text {un...A }} \rightarrow R_{n, \mathrm{~N}}$. From eqn (1) we obtain
[cf. 2] the vertex degree pgf for R as:

$$
\begin{equation*}
F_{0}(\theta)=\mathrm{e}^{d(\theta-1)}=\mathrm{e}^{d} \sum_{j \geqslant 0} \frac{d^{i} \theta^{j}}{j!} . \tag{4}
\end{equation*}
$$

Quite generally, the degree restriction of random f-graphs can be relaxed by applying the double limit $f \rightarrow \infty$ and $a \rightarrow 0$ and therebye any result obtained for $R_{(f}$, furnishes an analogous result for R.

3. 1-Connectivity in Random Graphs and Raniom f-Graphs

Consider a point p picked at random in $R_{(f)}$ and let it be the root, on generation g_{a}, of a rooted component of $R_{(\rho)}$ whose points fall on generation g_{s} if these points are distance s from $p(s=1,2,3, \ldots)$. The point p has degree j with probability given by eqn (1), thus with this probability it has j successors on generation g_{1}. Obviously, each of these successors has degree at least 1 and at most f so that the degree distribution for points on g_{1} has pgf $\theta F_{1}(\theta)$ where:

$$
\begin{equation*}
F_{1}(\theta)=(1-a+a \theta)^{\prime} \tag{5}
\end{equation*}
$$

is the pgf for the number of successors (on g_{2}) of a point on g_{1}. Similarly, a point on g_{s} has a pgf for its number of successors (on g_{s+1})

$$
\begin{equation*}
F_{s}(\theta)=F_{1}(\theta), \quad s>0 \tag{6}
\end{equation*}
$$

As $R_{\text {(I)... } N}$ evolves (that is as N or as a increases) almost all components are initially trees with the order of the largest component growing smoothly until for some value $N=N_{1}$ ($a=a_{1}$) the structure of $R_{(f)}$ changes abruptly and the order of the largest component exhibits a double jump, or discontinuity, in the limit $n \rightarrow \infty$. The unique largest component in a random graph following this abrupt change was termed the giant component by Erdös and Rényi [7] who also discuss its properties in some detail. The phenomenon has also been noted in the chemical and physical literature [1, 2, 3, 4] where the abrupt change has been likened to such processes as phase transitions and polymer gelation [9]. It was shown that [2]:

$$
\begin{equation*}
N_{1} \sim \frac{f}{2(f-1)} n \quad \text { or } \quad a_{1} \sim \frac{1}{(f-1)} \tag{7}
\end{equation*}
$$

To prepare for what follows we sketch the cascade theory proof of this result (for details see [2] and references therein).

Since, prior to the transition, almost all components are trees we obtain (by cascade substitution) the pgf for the order of components in $R_{(f)}$:

$$
\begin{equation*}
W(\theta)=\theta F_{0}\left(\theta F_{1}(U)\right) \equiv \sum_{j \geqslant 0} w_{j} \theta^{i}, \tag{8}
\end{equation*}
$$

where $U(\theta)=\theta F_{1}(U)$. Since:

$$
\begin{equation*}
\frac{\mathrm{d} W(\theta)}{\mathrm{d} \theta}=F_{0}(U)+\theta \frac{\mathrm{d} F_{0}(U)}{\mathrm{d} U}\left(\frac{F_{1}(U)}{1-\theta\left(\mathrm{d} F_{1} / \mathrm{d} U\right)}\right) \tag{9}
\end{equation*}
$$

the expected order $\langle w\rangle$ of the component (tree) of which the random point p in $R_{\text {(} \cap}$ is root, is:

$$
\begin{equation*}
\left.\langle w\rangle \equiv \Sigma_{j} j w_{j}=\frac{\mathrm{d} W}{\mathrm{~d} \theta}\right)_{0=1}=\frac{1-F_{1}^{\prime}(1)+F_{0}^{\prime}(1)}{1-F_{1}^{\prime}(1)} \tag{10}
\end{equation*}
$$

where $\left.F^{\prime}(1) \equiv \mathrm{d} F(\theta) / \mathrm{d} \theta\right)_{\theta=1}$.

The expected order $\langle w\rangle$ diverges when:

$$
\begin{equation*}
1-r_{1}^{\prime}(1)=0 . \tag{11}
\end{equation*}
$$

and it is at this stage in the evolution of a random f-graph that the giant component suddenly appears. Since, furthermore, a maximal I-connected subgraph of $R_{1,}$, is just a component of the random graph, eqn (II) gives the critical value a_{1} at which there is an abrupt increase in the order of the largest 1 -comected suhgraph of R_{6}. From eqn (5):

$$
\begin{equation*}
F^{\prime}(1)=(f-1) a \tag{12}
\end{equation*}
$$

so that the critical (or threshold) value for 1 -connected subgraphs of $R_{(f)}$ is

$$
\begin{equation*}
a_{1}=1 /(f-1) . \tag{13}
\end{equation*}
$$

If $R_{(f), n, N}$ has n points and N edges then:

$$
\begin{equation*}
N \sim f a n / 2 \tag{14}
\end{equation*}
$$

Thus, for the evolving random f-graph, the critical number of edges N_{1} for a giant 1-connected subgraph is [cf. 2]:

$$
\begin{equation*}
N_{1} \sim \frac{f}{2(f-1)} n \tag{15}
\end{equation*}
$$

Obviously for $f \rightarrow \infty . N_{1} \sim n / 2$ as obtained by Frdös and Rényi [7]. and as can be obtained directly from eqn (11) using:

$$
\begin{equation*}
F_{1}(\theta)=\mathrm{e}^{\prime \prime(\prime \prime \prime}{ }^{1 \prime} \text {. } \tag{16}
\end{equation*}
$$

to which eqn (5) leads in the double limit $f \rightarrow \infty$ and $a \rightarrow 0(f a=d$ is fixed).

4. k-Connectivity in Random Graphs and Random f-Graphs ($k=2,3, \ldots$)

We now follow a similar construction but discount all points of degree $<k$. That is, choose a random point p_{k} from among the points in $R_{(f)}$ known (with probability given by eqn (1)) to have degree $\geqslant k$. Next examine the degrees of the successors of p_{k} through generations g_{1}, g_{2}, \ldots discarding any successors on g, whose degrec is less than k. By similar arguments to those used in Section 3 for 1 -connected subgraphs of $R_{\text {t }}$, the order of the maximal k-connected suhgraph of which a random point (of degree $\geqslant k$) in $R_{i, 1}$ is root, has pgf:

$$
\begin{align*}
W_{k}(\theta) & =\theta H_{k}(U)=\Sigma_{i} w_{k, j} \theta^{\prime} . \\
U_{k}(\theta) & =G_{k, 1}+\theta G_{k, 2}\left(U^{I}\right) . \tag{17}
\end{align*}
$$

where $H_{k}(\theta)$ is the renormalised pg for degrees of points in $R_{(,)}$known to have degree $\geqslant k$ [cf. eqn (1)]. Thus:

$$
\begin{equation*}
H_{k}(\theta)=\sum_{i=k}^{\prime}\binom{f}{i}(1-a)^{\prime}{ }^{\prime} a^{i} \theta^{i} / \sum_{i}^{\prime}\binom{f}{i}(1-a)^{\prime} a^{\prime} a^{\prime} \tag{18}
\end{equation*}
$$

Also

$$
\begin{align*}
G_{k, 1} & =\sum_{i=1}^{k}\binom{f-1}{j}(1-a)^{\prime} ; a^{\prime} a^{j} . \\
G_{k, 2} & =\sum_{i-k}^{\prime}\binom{f-1}{j}(1-a)^{\prime} '^{\prime} a^{\prime} \theta^{i} \tag{19}\\
& =F_{1}(\theta)-\sum_{i=1}^{k} \sum^{2}\binom{f-1}{j}(1-a)^{\prime}+a^{\prime} a^{\prime} .
\end{align*}
$$

The expected order of the maximal k-connected subgraph of which a random point (of degree $\geqslant k)$ in $R_{(f)}$ is root is:

$$
\begin{equation*}
\left.\left\langle w_{k}^{\prime}\right\rangle=\frac{\mathrm{d} W_{k}(\theta)}{\mathrm{d} \theta}\right)_{n=1}=\frac{1-G_{k, 2}^{\prime}(1)+H_{k}^{\prime}(1) G_{k, 2}(1)}{1-G_{k, 2}^{\prime}(1)} \tag{20}
\end{equation*}
$$

which diverges when:

$$
\begin{equation*}
1-G_{k, 2}^{\prime}(1)=0 \tag{21}
\end{equation*}
$$

On substituting for $G_{k .2}(0)$ from eqn (19) we have proved:
Theorem 1. In the evolution of a random f-graph $R_{(f, n, N}$ the order of the largest k-connected $(k=1,2, \ldots)$ suhgraph increases abruptly at a critical edge prohahility a_{k} given by the root (hetween zero and unity) to

$$
\sum_{i-k-1}^{f-1} j\binom{f-1}{j}\left(1-a_{k}\right)^{r-1-j} a_{k}^{j}=1
$$

Corollary 1. As is easily seen by reuriting Theorem $1, a_{k}$ is also the solution to:

$$
(f-1) a_{k}-\sum_{j=0}^{k} j\binom{f-1}{j}\left(1-a_{k}\right)^{\prime}{ }^{\prime} a_{k}^{j}=1
$$

or 10

$$
\sum_{j=k-1}^{f-1}(-1)^{j-k+1} j\binom{j-2}{j-k+1}\binom{f-1}{j} a_{k}^{\prime}=1
$$

Theorem 2. The asymptotic critical size N_{k} of a random f-graph $R_{(f, n, N}$ for the appearance of a giant k-connected subgraph is

$$
N_{k} \sim f a_{k} n / 2
$$

Proof. Obvious from eqn (2) and Theorem 1.
In the double limit $f \rightarrow \infty$ and $a \rightarrow 0$, but with fixed mean vertex degree $d=a f$, eqn (19) [cf. eqn (16)] becomes:

$$
\begin{equation*}
G_{k}(\theta)=\mathrm{e}^{\cdot d} \sum_{i=0}^{k} \frac{d^{i}}{j!}+\sum_{j=k-1}^{\infty} \frac{d^{i}}{j!} \theta^{i} . \tag{22}
\end{equation*}
$$

Thus.
Theorem 3. The asymptotic critical size of a random graph $R_{n, \mathrm{~N}}$ for the appearance of a giant k-connected subgraph is

$$
N_{k} \sim d_{k} n / 2
$$

where the critical mean vertex degree d_{k} is the solution to

$$
\sum_{i=k, 1}^{\infty} j \frac{d_{k}^{j}}{j!}=\mathrm{e}^{d_{k}} \quad \text { or } t o \quad d_{k}-\mathrm{e}^{-d_{k}} \sum_{i=0}^{k-2} j \frac{d_{k}^{i}}{j!}=1
$$

Proor. Substitute eqn (22) into eqn (21). Alternatively. replace a_{k} in Theorem 1 by $d_{1} f$ and then pass to the limit $f \rightarrow \infty$ with d_{k} fixed.

5. Spicial Chses

The critical parameters (a_{k} and N_{k}) for k-connectivity in random graphs can be obtained explicitly from the foregoing for a few special cases. Thus:

$$
\begin{array}{lll}
k=1(\text { all } f): & a_{1}=(f-1)^{\prime} & N_{1}-\frac{f}{2(f-1)^{n}} \\
k=2(\text { all } f): & a_{2}=(f-1)^{\prime} & N_{2}-\frac{f}{2(f-1)^{n}} \\
k=f(\text { all } f): & a_{1}=(f-1)^{\prime \prime \prime \prime} . & N_{t}-\frac{1}{2} f(f-1)^{\prime \prime \prime \prime \prime \prime} \tag{25}
\end{array}
$$

For $f \rightarrow x$:

$$
N_{1}-N_{2}-n / 2 . \quad N_{1}-\binom{n}{2}
$$

The equivalence between 1-connected and 2-connected subgraphs is casily explained. As soon as the giant component (1 -connected subgraph) appears in the evolution of random graphs, closure of many infinite cycles is possible. An infinite cycle is a giant 2-connected subgraph.

For all f it is reasonably ohvious that:

$$
\begin{align*}
& (f-1)^{\prime}=a_{1}=a_{2}<a_{3}<\cdots<a_{1}<a_{1}=(f-1)^{\prime \prime \prime} . \tag{26}\\
& \frac{f n}{2(f-1)}=N_{1}=N_{2}<N_{3}<\cdots<N_{t}<N_{t}=\frac{1}{2} f(f-1)^{1 \prime \prime n} . \tag{27}
\end{align*}
$$

Acknowifidgements

The problems here were posed during the First Graph Theory Day in New York held at the New York Academy of Sciences, May 1980, and sclved in part during subsequent discussions at Bell Laboratories. Murrey Hill. New Jersey. We thank both of our hosts.

The useful comments made hy Joel Spencer (SUNY. New York) which contributed to the solution of the problem on k-connectivity are acknowledged with pleasure.

Reffirences

[^0]6. J. W. Kennedy and L. V. Quintas, Extremal f-trees and embedding spaces for molecular graphs, J. Diserefo Applied Math. 5 (1983), 191209.
 17 61: On the cevolution of random graphs II. Bull. Inve. Internot. Statistics (Tok yo) 38 (1961), 343 347: Parts I and II reproduced in Erdös, The Art of Counting (I. Spencer, ed.), MI.T. Press, 1973, chap. 14, pp. 559 617.
8. I. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.
9. J. W. Kennedy, The random graph-like state of matter, Computer Applications in Chemistry (S. R. Heller and R. Portenzonc, eds), Elsevier Science Publishers, 1983, pp. 151 178.

Received I Norember 1982
*Present permanemt address and wddress for all correspondenere.
Mathematics Deparment. Dysen College. Pace University. New York. NY/ON38. ('.S.A.
P. Erioüs anis J. W. Kenneby*

Department of Statistics, Baruch College of the City University of New York.
New York. NY IOOIO. U'.S.A.

[^0]: 1. J. F. Cohen, Threshold phenomena in random structures. 7th lnternational Conference. Irom Therretical Physics to Biology. Vienna. 1979.
 2. J. W. Kennedy, ICYCLES-1: Random graphs, physical transitions, polymer gels and the liquid state. 4th International Conference on the Theory and Applications of (iraphs. Michigan, U.S.A. May. I980) (G) (hartrand et al., eds), John Wiley \& Son. New York. 1981. pp. 8193.
 3. J. W. Kennedy, Statistical Mechanics and Large Random Graphs, Summer School on Data Processing in Chemistry, Rzespow, Poland. August (1980). Z. Ilippe (Fd.). Flsevier. pp. 1151.32 (1981).
 4. G. S. Bloom. J. W. Kennedy, M. T. Mandziuk and L. V. Quintas. Random graphs and the physical world. graph-theory, Lagow, 1981. Proceedings of the International (onderence in Memory of Kazimiery Kuratou cki. Lagow, Poland, Fehruary, 1981 (M. Borowiecki, I. W. Kennedy and M M. Syslo. eds). Leclure Notes in Mathematics 1018. Springer-Verlag. Heidelherg. 1983, pr. 94110.
 5. 3. W. Kennedy. k-Connectivity and cycles in random graphs with applications. Notes from New York Graph Theory Day I. [GTD $12 / \mathrm{New}$ York Academy of Sciences. 1980. יון 15.
