
Motivated by applici~tions oI'cvolving r;~ndom gr;iphs ;IS models litr pli;lsc transition5 in 
physical systems [I. 2. 3. 41. prohlc~ns were posed [5] concerning Ilircshold functions for the 
appearance of giant k-connecterl strhgraphs in r;tndom graphs. random /:graphs (i.e. 
random graphs with maximum vertex degrec,f'). and ri~ntloni lattice-graphs (i.c. random 
graphs restricted to be emheddahle 161 in some lattice-grilph). For more details about these 
classes of random graphs see [2] or 141. 

We present here a solution to the problem for the first two cl;lsscs of random graphs and 
for all k - 1 .  2. . . . . The problem concerning random lilttire-graphs re~nains open. 

We employ r ( ~ t r h t i i  ~ r u p h  in thc sense of Erciiis and Rknyi 171. 1hat is it graph R,, , selccted 

with equal probability from among the ( f )  gr:~plis on 11 (l~~bclleci) points ;11iri with ,V 
\ ,  

edges. I t  is thc statistical properties as the random gr;~pIi cvolvcs (i.e. as N increases) in the 
asymptotic limit ti -+ rn that ;Ire of inlcrest. 

An ,f-grrrph is a graph with maximum degree < /: A random ,/lgraph R , , , , , , ,  is dclined 
analogously to R, , . ,  but is subject to the constraint that no vertex has degree z / :  That is. 
R, , , , , , ,  is a graph selectcd with cqu;ll probability from among the . f ;(I!. N1.f-graphs on 11 

(labelled) points and with N edges. Since the number. l , ( t i .  N )  is an unsolved problem (see 
e.g. [8]), for practical purposes we mity adapt one of the operi~tional form~~lations of R , , ,  
as a stochastic process (see e.g. [7h]) to the degree restricted case. Random flgraphs ;Ire 
of interest as chemical models where degree restrictions arc imposed hy bonding considera- 
tions [2. 31. 

It has been shown [cf. 2) that the vertex degrcc distribution in R , , ,  has prohabilit) 
generating function (pgf): 

that is, the probability that a random poitit in R,,, has degrcc j is the coellicient oP0' in &,(o). 
where in the asymptotic limit ti + ,Y. : 

2 N 
(1 ,L -- - - probability of an cdgc in R , , , .  ( 2 )  

I? / '  

Let cl he the mean vertex degree in R,,,. then: 

111 the double limit that / '  + -18 i~nci (I -t 0, hut s ~ r c l ~  Iltal the nlcan vertex clcgrec tl is 
preservcd. clegree rcstrictic~ris arc rcmovcd and R,,,,, , -r N,,, . I:roln ccln ( I )  we oht;lin 
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[cf. 21 the vertex degree pgf for R as: 

Quiie gcncviilly. the degree restriction of  random J-graphs can Ix relaxed by applying the 
double limit ,f -+ m and a -, 0 and therebye any result oblained for R,,, furnishes an 
analogous result for R. 

Consider a point p picked at random in R,,, and let it be the root. on generation go, of 
a rooted component of R,, whose points fall on generation g ,  if these points are distance 
.r from p (s = 1, 2, 3, . . . ). The point p has degree j with probability given by eqn (I), thus 
with this probability it has j successors on generation g ,  . Obviously, each of these successors 
has degree at least I and at  most f so that the degree distribution for points on g ,  has pgf 
OF, ( f l )  where: 

is the pgf for the number of successors (on g,) of a point on g,. Similarly, a point on g, has 
a pgf for its number of successors (on g,, ,  ) 

F,(O) = F, (0), s > 0 (6)  

As R,,,,,, evolves (that is as N o r  as a increases) almost all components are initially trees 
with the order of the largest component growing smoothly until for some value N = IV, 
(a = a , )  the structure of R,,, changes abruptly and the order of the largest component 
exhibits a double jump, or discontinuity, in the limit n -+ co. The unique largest component 
in a random graph following this abrupt change was termed the giant component by Erdiis 
and RCnyi (71 who also discuss its properties in some detail. The phenomenon has also been 
noted in the chemical and physical literature [I,  2, 3, 41 where the abrupt change has 
been likened to such processes as phase transitions and polymer gelation [9]. It was shown 
that 121: 

To prepare for what follows we sketch the cascade theory proof of this result (for details 
see 121 and references therein). 

Since, prior to the transition. almost all components are trees we obtain (by cascade 
substitution) the pgf for the order of components in R,,,: 

W(0) = OF,(OF,(U)) = MJ,~ ' ,  
1 2 0  

(8) 

where Cl(0) = 0F,(U). Since: 

thc expected order ( w )  of the component (tree) of which the random point p in R,,  is root, 
is: 

where F'(I ) = dF(0)/dO)R= 



The expected order ( w )  diverges when: 

I - F,'(I) = 0. ( 1 1 )  

;ind i l  is ; I I  tlii.; sl;~gc in Ihc cvolr~tion of ;I r;~ncloln / :gr ;~l~l~ lIi;11 llic giii111 c ~ ~ t l l ~ o ~ i c t i l  
suddenly ;Ippears. Since. li~rtlicrtnore, a maxirn;tl I-conticctctl srlhgr;rph of Rill is just a 
component of the random graph, eqn ( I  I )  gives the critic;~l value n, at which there is an 
uhrtrpr increase in the order of the largest I-c~otrrtc~c~tc~~l .vrrhgrrtl>lr of R,,,. From eqn ( 5 ) :  

F '  I )  = ( f  - l )ti. (12) 

so that the critical (or threshold) value for I-conncctcd sr~hgrirphs of R,,, is 

1 ,  = I - 1 ). ( I ? )  

If R ,,,,,,, has rr points and N edges then: 

N - ,fu 1112. (14) 

Thus. for the evolving random ,Fgraph. the critical nrtmher of edges N, for a giant 
I-connected subgraph i s  [cf. 21: 

Ohviorlsly for f -, m. N, - t1/2 as ohtained by Erdiis ant! Rdnyi [7]. and as can he obtained 
dircctly from eqn (I I) using: 

e""' I ) ,  (16) 

to which eqn (5) leads in the clouhle limit / -+ TI and tr -* 0 ( /;I = (1 is fixetl). 

We now follow a similar construction but di.~corm~ all points of degree < k. That is. 
choose a random point p, from among the points in R,,,  known (with probability given by 
eqn (I)) to have degree 2 k. Next examine the degrees of the successors of p, 1h;ough 
generations g , ,  g,, . . . discarding any successors on g, whose degree is less than k. By 
similar arguments to those used in Section 3 for I-connected subgraphs of R,,,, the order 
of the maximal k-connc.cted srthgrcrplr of which a rando~n point (of degree 2 k)  in R,,, is 
root. has pgf: 

where Hk(0) is the renormalised pgf for degrees of points in R, ,, known to have degree 2 k 
[cf. eqn (I)]. Thus: 

Also 



The expected order of the maximal k-connected subgraph of which a random point (of 
degree 2 k )  in R,,, is root is: 

which diverges when: 

I - Gi,2(l) = 0. 

O n  suhstitr~ting for Gk,,(0) from eqn (19) we have proved: 

TIIIXOREM 1 .  In the evoltrtion ? f a  randomf-graph R,,,,,,. the order qftlte larges~ k-ror~ncc- 
t(1d (k  = 1 .  2. . . .) .s~~hgraph increases ahrtcptlj~ nt a cri~irnl edge proh~hilit~v ( I ,  given hy the 
root (hetwc~e~~ zero and unity) Lo 

' I R I A R Y  I. As i.c ens;/-v .seen hv reli-riling Theorem I .  (1, is a/.so the sohition to. 

THEOREM 2. The asymptotic critical size N, of a randotn f-graph R,I,,n,N f t~r  the appearance 
of ginnt k-connected subgruph is 

PROOF. Obvious from eqn (2) and Theorem I .  

In the douhle limit f -+ oo and a -+ 0, but with fixed mean vertex degree d = 4 eqn (19) 
[cf. eqn ( 16)] becomes: 

Thus. 

THEOREM 3. The a.~ymptotic critical size ? / a  random grc~ph R,,,,for /he appearance o f n  
gicml k-c,onn~cted szchgraph is 

N, - dkn/2 

~vherc~ the cri~iral mean vertex degree dk is the soltction to 



PROOF. S l l b s t i t i ~ t e  c q n  ( 2 2 )  i n t o  c q n  ( 2 1  ). Alternatively. r c p l s c c  (1, in  Thcorcrn I b y  I/, f' 
and then pass t o  t h c  l i m i t  f ' - r  ,r w i t h  (1, fixed.  

Thc c r i t i c a l  p a r a m c t c r s  ( ( 1 ,  and N, ) f o r  h-cont?ccI iv i ty  it1 ra t i t lo rn  graphs can he o b t a i n e d  

e x p l i c i t l y  rrom t h e  f o r c g o i t ~ p  li,r a f e w  speci:~l c : ~ s c s .  ' l ' l i r~s :  

k = ,/'(all,/'): = ( 1' - 1 )  I! . I V ~ .  ; I . ( /  - I )  l l t 1  ( 2 5 )  

For ,f + cr : 

The c q i l i v e l c n c e  h c t w c e n  I - c o n n c c t c t l  a n d  2-cnnr icc tcd  s i ~ h p r ; l p h s  is e a s i l y  eupl; l inccl .  As 
soon ;IS t h e  g i a n t  component ( I - c o n n c c t c d  s u h p r a p l ~ )  a p p e ; l r s  in t h e  e v o l u t i o n  of r a n d o m  

graphs. closure of m a n y  infiriitc c y c l e s  is p o s s i b l e .  A n  i n l i n i t c  cyclc is a g i a n t  2-connected 
s u b g r a p h .  

For all,/it is reasonably o h v i o u s  t h a t :  
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