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ABSTRACT . Let .V, . .i2 . . . . be a sequence of i .i .d .r .v .'s with
P(_l; _ +1) = P( .i ; _ -1) = 1/2 . Further let
O = 0 • ` r. _ -I1 + X2 + . . . + -i r (1l = 1 . 2 . . . . ) and
1(-V .K) = lnato. r . V-K (5',-F -

	

(h = 1.2	V: N = 1 .2 . . . .) . Consider a
sequence ;h \-) of positive integers and investigate the properties of the
maximal increments I(N.Iiv) . This problem was studied by many authors in
case of different { \}'s . In the present paper we intend to summarize the
results and prove a few new theorems . We are especially interested in the
case K\ = Iog A +->flo~- .~ ) . In section 1 we introduce a few notations and
concepts and recall the known results in the case Iív < olog N . In
section 2 a key - inequality will be proved . The main results are presented
in section 3 . Section 4 gives a survey of the case log N « Iiv < .N .

1 . NOTIONS AND A FEW KNOWN RESULTS

In order to present the results of our paper in a pleasant form, it is
uorthwile to recall some definitions, see, e .g . Révész (1980,1982) .

Let { _ ;7„) be a sequence of r .v .'s . Then we formulate :
DEFINITION 1 . The sequence f&i) (n = 1 .2 . . . .) belongs to the upper -upper
class of S (f, c ü :,t'(t)) i# 7.,, _< ,fl(n) a .s . for all but finitely many n. .

DEFINITION 2 .

	

The sequence f2(n) (n = 1 .2 . . . .) belongs to the upper - lower
class of S (f 2 E ? C .r,(S)) if Z„ >

,f-,(n)
a .s . i .o .

DEFINITION 3 . The sequence f3(") (ia = 1 .2 . . . .) belongs to the lower-upper
class of ( U3 E: ~ü :(C)) if Z„ <,f3(n) a . s . i .o .
DEFINITION 4 . The sequence f,(n) (o = 1 .2 . . . .) belongs to the lower-lower
class of , ( f, E _

	

(ti )) if Z„ >_ f4(n) a .s . for all but finitely many n .
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DEFINITION 5 . If there exists a deterministic sequence ffn) such that
film„__ . (Z„ - f(a)) = 0 then we say that S is asymptotically deterministic
(AD) .
DEFINITION 8 . If there exist ,f j (n) E iú~(1) .,''2(n) E LLwf~), and fi > 0 such
that ,ft - f2 <- fi then we say that C is quasi asymptotically deterministic
(QAD) .

Utilizing these concepts we present some known results .
(i) (Erdős - Révész 1975) Let - > 0 and

Ii v <- [log .V - log log log V + log log ,, - 2

Then {I(_ .-h v)) is AD and 1(:V, Ii % ) = K-,; if N > V;, = Vn( . =)
(Here and in what follows, lot means logarithm with base 2 ; [r] is the

integral part of x .) This clearly means that with probability 1 for all N
big enough the sequence _ I . 2	Vv contains a run of length

	

A
careful investigation of the number of such runs can be found in Deheuvels
(1985) .

(ü) (ErdSs-Révész 1975) Let

31(V,F)<Iiv 5 [log .V+log logyV-log loglogV+log loge-2-F]=?2( .V . F) .

Then I(V. Kv) is QAD and I(V.-h v) = K_,; or by - 2 if N is big enough .
(iii) (ErdSs-Révész 1975) Let

3 2 (V .ó <h_V < Í,log .V+Eoglog .V+(1+ ..}logloglogN

Then I( .V,Kv) is QAD and I(_V.Iiv) = K _, , or Iiv - 2 or Kv - 4 if .V is big
enough .

(iv) (Erdős-Révész 1975) In general, if

T(V.F) _ [log _'+TloglogN+(,1+F)loglog. log .Vj <Ii,,
<53T._2(,V,r.) _ [ Iog:V+(T+1) loglog :V-log]off log '-

-log((T+1)')+logtoe: e-2- (],

then

	

is QAD and I( .N .Ií ,.. ) = fi - 2T or h - 2T -

	

and if

T-2(N-') < fiv <-

	

-- I (-Y,

then {I(V,Iiv)} is QAD and I(V,fiv) = liv-2T or Kv-2T-2 or K\, -2T-i .
(v) (Deheuvels- Devroye -Lynch 1986) Let Ii\ =clogV } (leglo~ .\' } .c> 1 .

Then f or any t>0

[clog :1]+ (1 + )ploglov .V E "ú'(.I(A'.Kv)) .

a[c10L, %%] +(1-fr)p1oglog C L'Uf,N,h%)) .

[clog ..V]- (1 - -) ,loglog N C (I (N . Ix v)),

r}[rlog N! - (1 +£)n[Og lot, \ E

	

(I(1 .I1~')) .

where r, is the unique solution of the equation
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and

(ü) If

1+

h(xZ _ -x log .F - (1 - X) 1og

r, = 1/ log i ,-

Comparing the above statements one can realize that {I(N .K-)) is QAD
when Kv is "regular enough" and smaller than log N + T loglogN with some
fixed T > 0 . However, when h-\ _ (I + F) log .V then the actual value of
I(N.K,,) strongly depends on chance . In fact, the upper and lower bounds
differ by U(loq log .V ) . One of the main aims of this exposition is to fill
the gap between the cases Ka =lo-N+Tloglog ' and K,%, _ (1+<)lo-,N .

2 . AN INEQUALITY

In this section xe prove
THEOREM 1 . Let 0 < Ii = h-,; < .V and 0<T= . -k <K/2 . Assume also
h,, --

	

- x . Furthermore,let

(

	

?T 1

	

K- 1) . (1)

Then it holds :
(i) If Vp- x and ,4'2I\ps - 0 then there are constants C'1 and C'_ such that

CI esp(-No) < P(I(N .KC < h - 2T) < C9exp(- :Vp) .

	

(2)
Np - :Dc and h p - 0 then for any -- > 0 it holds :

expf-it + F 1 .~ li} < P(I( .V.fi) < K - 2T) < esp(-(l - <)Np) .

	

(3)
In order to make some of our arguments more transparent, we shall

first give a proof of the special case T = 0 .
Lemma, For any of > 0 it holds

(A1+2)2-F- -(1t+2)*2-2 -2 <_ P(I(~I+h . K) =K) < (If+2)2-x--1(4)

Proof : Let us first define some events :

ir, _ (,5K = h i .

=iYj=0 . .'

	

=Ií ) .

It clearly holds .

P(Au)=l-h2-

P I-

	

)

	

>_.h
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and, since {I(_,V+K,K)=K}=U f 0,_-i j , we obtain from the
inclusion-exclusion formula :

and the assertion of our lemma follows from the fact that P(_4 _-1 r ) = 0 if

Ij - rl < K and = P(_Aj)P(_ ,) otherwise .
Now,in order to prove assertion (i) of theorem 1, let J1 be chosen in

such a way that MAp` - 0 and K/M - 0 . Let

Obviously,

and

P(--, Ij) - ~` P(AjA,) <- P(I(M+ K. K) = K) < t P(A 1 ) .

j(M+K I-M-1

j--iiltll-A i-1

Dj =

	

J

	

~ r

~~ I,tij+K)I-1

r-0

E_

N i,Al+K)j+i

—0

N jAI-K) --1

F =

	

D,

E`; F' , c (I(_v,K) < K} C E' - ',

' :Y' iAl-K) - I

PW )

	

ll

	

P(C" ),
-1- 0

'` i!11-+-11i'_1

P(F'') =

	

II

	

P(" , i )

P(F') _

	

P(D ; )

How, since it is also clear that P(F` F`' ) > P(F`')P(F''

	

1..e finally obtain

X 1-tit--KI'-1

11

	

P(C;')P(D`t') <- P(I(N . K) < K - 2)T) <

	

P(C; 1
_ 1 = 0
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Using lemma 1, this can be restated as

((1-,~~p)(1-hp))''~rNK' < P(1(N-.K) < K-2T) < (1- .ilp+112p2)i yr} K1+2

By our choice of M , both products on the left and right-hand sides are of
size exp(-_Vl) + 0(1)), so (2) is proven in this special case .

Now, in order to prove theorem 1 in the general case, let us redefine
the events Ai in a suitable way :

r{Sri>K-2T1

	

if j=0
A - )l ( -h- r -Sr <K-2T :0<r<j.Sh+j -5 >- K-2T)

	

if 0<j<-K
l {.Sh-r - Sr <K-2T : j-K< r<j.Sx--1- .Sj>I -2T} if K<j

The probabilities of these events can be estimated in the following way :
Lemma2 . If T < K/2 then for 1 < j < K it holds

Proof : Let

Y=#{r :i<r< j-1 :1r<_lr-_h}

~1=#{r :1<r<,j-1 :1r=-1 ._~r~g=+1}

I2=#(r :i<r< j-l : .Fr=+l .A,- =-1)

Clearly

From the ballot theorem (cf . Takács 1967) it follows that

P(_l J_ i=-1 ._I ;__{ =+1 .5~ I;_1-S1=K-2T-1 .Y1 .y2)
(1+I1-I2) V0

and

P (-~ til-x-1 -
'`J = h - 2T - 1 . Y)

1_ -E(1+Y, - Y21S.i-h t - Sl=h-2T -1 . Y)1 +1
Now,since the conditional distribution of }, is hypergeometric with
parameters K - i, K - T - 1, and Y, we get the estimates

E((1+Y,-)2)V01-'j-K_1-Sj=K -2T -1 . Y)
> EM +3'1 - Y2kS'--K--1 - Sj =K-2T -1. Y)

1+Y (1-
2T

)\

	

Zi-1

~1-
kT1 )2-h-,(K 1)

<P(,9 ;)< I1
KT1

	

2-x-1~K il

P(=1 i) =
PGAJIXi

= - 1 , _Vi- = + l .

	

1 - S i- IS - 2T - 1) X

xPGVi = -1)PG'li-K = +1)
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and

E((1+11-1 -2)VOISi+h_1-SJ=K-2T-1.1 )

Finally, the conditional distribution of Y is binomial with parameters
j - 1 and 1/2, so the assertion of our lemma is simply obtained by taking
expectations in the last two estimates .

From this point, we can proceed in exactly the same manner as in the
proof for the case T = 0 . A proof of the second assertion of theorem 1 is
also obtained in a quite similar way ; the only difference is that the final
argument only yields somewhat coarser bounds on P(I(N.K) < K - 2T) .

3 . STRONG THEOREMS

THEOREM 2 . Let K = Iky log ,V and 0 < T = TE < Ii/2 be nondecreasing
sequences of integers . Then

Ii -2T E LLC(I(N,K)) if

	

exp(-2"p(2 ")) < x

	

(5)
11-11

K-2TElu11(I(N,K)) if 'V- exp(- 2"p(2')) =x

	

{ti)
r - s

Ii - 2T E ?i21-(I(I ,K» if

	

2"p(2") _ -x',~

K - 2T E ?U U( (I(-V,K» if

	

2"p(2") < x

	

(8)
n~H9

Here p is defined as in theorem 1, (1) :

p-~

	

2T

)2
._F_,(K-1)

1- K
-1

	

TT

Proof . (b) and (8) are simple consequences of theorem 1 and the
Borel - Cantelli lemma, while to prove (6) and (7) it is worthwile to utilize
the Erdős - Rényi form (Erdős - Rényi 1970) of the Borel - Cantelli lemma . It is
quite obvious that the conditions (b), (6), (7), and (8) can be replaced
respectively by

(7)

(9)

<- E(l1 '1 - Y2~~SJ~K-1-Sy=Ii-2T-1 .1')+1

< E((Y1 -1 2) 2 1 j - K- 1 - 5, = Ii - 2T - 1,Y) 1 ' 2 +1
< K-2T-1Jl + 1 +

	

I+1h-1

(1
2T

	

h-i
(T)

1 + F ) log log N
(5*)log e

(1 h-1(2T

	

11

	

(1_F)loglog_Vg
(6*)log eK-1

)1\-2-

	

1 T~
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ir2-h -1 ~

	

i
> ( log, N) 1r ,

.V2-h --1

l h 1

	

(log .V) -1- `

for some r > 0 and every V big enough .
Ve shall investigate the case Kv = [Clog V] with C > 1 in a little

more detail proving the following
Consequence 1 . Let K = K_,v = [C' log N] with C > 1. Then

then

(1-2^)~		21
AVp(K.T)	 2	

2--!

	

2 , 7 , ( 1- y) 1- 7

and a little calculation shows that the desired conditions are egnívalent
to (5*) to (8*), respectively .

Now, let K = Kv = log -V + f (_V) be a non-decreasing sequence of
positive integers with j'(n) = o(logN) and consider the equation

h 2Ji
=

C(1 - 23)log .V + (1+ F)2ploglogN E UUC(I(N.Kv)),

C(1 - 23) log N + (1 - F)2plog log N E U C C(I (N, Kv)),

C'(1-23)logN-2p lop- log V-20logloglogN

-4-20 log

C(I-23)IogN-2ploglogN-2+log lot- log N

+2Hlog(1-23)+'2Blogloge+2plog-+30+1-F E t C(I(.V .Iiv))

where .'1 is the solution of

(2~ 1(1 - _ ), 1

p=('21og
I-3 .

9=2p

and g is an arbitrary positive number .
Remark__ Observe that the UUC and 'ÚLC classes in the above consequence are
exactly the same as the corresponding classes in (v) of section 1 while the
herewith given results for the iUC and L,̂C classes are a bit sharper than
the corresponding results in (v) .
Proof of consequence 1 . Let

T=-~K

59
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An easy calculation gives that the solution of this equation is

f(ti')
T --

We prove
Consequence 2 .

(i) Assume that

lim
f(N)

= 0 for any (> 0 .
.V-- ;a; (log N)I

Then I(N,Kv) is QAD and there exists an ,f1 E UUC(I(N.Kv)) and an
f} E CCC(I(N,K,v)) such that fl - f4 < 3 .
(ű) Assume that

f(N)

	

(log N) a (0 < (< 1)

Then I(N.Kv) is QAD and there exists an f l E ~~C(I(V,ICv)) and an
f4 E GGC(I(N,Iiv)) such that fl -,f} <- 1.Z_ + 1 .
(iii) Assume that

lim	
f (N)

	

= 0 f or any E >O .
.V-. :~ (log N)r - :

Then I(V,Kv ) is not QAD .
Proof . Observe that

K - T log N(loglog N - log f (N))

T

	

f(N)

consequently
(í) if f (V) = o(log V)`) and

log log N - log f (N)

then

what

then

2-fG~' . (k )
= (log N)-it Tl

h

	

> (1+F)log log. N
T, + :i

	

log e

proves (i),
(ü) if f (N) _ (log N)' and

2- .fi-\'I

	

1 =
(log N) -i

z

2-J[tii

	

Ii

	

> (1+F)loglog .\"
~. T, + I ,

	

1

	

log e

P . DEHEUVELS ET AL .
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what proves (ii),
(iii) is trivial .

4 . THE CASE KN » logN

Up to now we have studied the properties of I(N.I(N) when
Iiti % x,N/Ii_\ - / ~c and K.y- < C1ogN with some C' > 0 . We have proved that
I(N)v) is QAD when Kv < logN + (logN) ° (0 < z < 1) and in the case
,h ~- _ [(.' Iog N ] (C > 1) the difference between the Ü U C and C C C is
O(loglog N) . We expect that this difference becomes greater as Kv becomes
greater . It is really the case, however, we will see that the available
results become less complete as Kti, becomes greater with the exception that
in the case h,v _ ~,, the law of iterated logarithm gives the complete
description of the four classes .

From now on the results can be more suitably presented using the
natural logarithm instead of the logarithm of base 2, hence log will be
meant in this sense . We present
THEOREM 3 . (Deheuvels - Steinebach 1986) Let IiIV be a sequence of positive
integers with K_v

	

where by/log.' is increasing and for some
p > 1 Kx (IogN)_r is decreasing . Then for any E > 0 we have

crtiK%, -fV 1 logK,N +(3/2+f)tw t loglogN E UUC(I(N.KN)),

-tti'llogKA +(3/2-~)t,ti 'loglogNEÜCC(I(N,K,v)) .

r~-Tip -t -1logA~y + (1/2+<)t~,-l log log N E ,CUC(I(NJ(v)),

,xy-K-v, -t,v l log1íy +(1/2-F)t~, I loglogNE LCC(I(~',ti,t)) .

where rer is the unique positive solution of the equation

elp(-loge/K) _ ( 1 + C,-,v 'a v1 2(1 - av) (i-a iv ) ;2

and

1

	

1 + Cx,~
log	

2

	

1 - u ;

Note that o

	

(2K-, 1 low V) 1 2
In the case when K\- » lop*'A' we have

THEOREM 4 .(Ortega - Wschebor 1984, Révész 1982) Let K v be a sequence of
positive integers such that K:ti• = [Iiv] where Kv is a sequence of positive
real numbers with

( ;i ll Ii < .1 and 'V/k\- is nondecreasing .

('+2a) hw/log e tb , oc .

log NÍi `- 1
}	- x .

log logN

Then
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and

2(N}Iíá " E w' : C(I(N,h;v))
if 61(N) and w2(.V) are increasing sequences with

vl(N)K1 2 E ?1C(I(N,K;v))

and

02(V )KN' exp(-,pi(.b (.b)/2) = oo .
N-i

Further for any e > 0

Sl z

	

U2
Kti: 2 (21ogNK_, 1 +loglogNK . 1 -2 log loglogV+log(	+E)

E C U C(I(N. v))

and

mi(N)hNIexp(-o,(N)/2) < x
N=1

1,2
K- 2 (21ogNK 1 + loglogNK.- I - 21ogloglogN - log(,r(1+ ( )

E C2C(I(N.Kv))-

Now we turn to the case when Kv is so big that not even (ir) of Theorem 4
surely holds . We consider at first the case Kv = CN(loglog .\') -_ 1 . The
following constant will be essential in our proofs .
Lemma 3 . There exists a constant ; log T,`, < T' < log	 472 such that

F = lim ~- i log 1 det

	

(~ - ~
j_1)

dy, . . . d l/„(10)n-- `o

	

n-

	

.` E.,

	

i0<t , j <nI

	

,

where E„ _ {0 = yo < yl <- . . . < y,z .-1i and 0(,)= (2-) -1 2 exp(-a 2/2) .
Proof . Let (11'(í),t > 0) be a Wiener process and set S(t) _ R'(t+1)-TV(t) and
'LIX = Supo .,,r,-,a S(t) . Put PA = P(.1h < 0) . We shall prove that

r = lis m (- \ log PA)

	

(11)

exists .
Knowing that (11) holds, (10) is straightforward from a result due to

Sheep (1971, see, e .g ., theorem 3 .1 in Cressie 1980) by which precisely

P„ _

	

det,

	

(yi - .~i-1) dy l . . . d y, -i
E

	

0< i,j<n

In order to show (11), we remark that Ps is nonincreasing in A > 0 with
PO = 1/2 . Futhermore, define a process
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1 q(t)

	

if 0 < t <
1 s(4+ 1) if t >,\

We have p(s, t) = EfS(s)S(t)) _ (1 - Is - fl) V 0 and
pals, t) = E(SA(s)~A(t)) =(I - ~s - tI) V 0 if 0 < s,t < ?, or A < s .t and pA(s,t) = 0
otherwise . Hence pA(s.t) < p(s,t) for all s,t >- 0, and it follows from
Slepian's lemma (Slepían 1982) that

P( sup Sa(t) < 0) < P( sup S(f) < 0) .

and hence that for all .\ . .\'> 0

PA A ' >_ PA P \,

	

(13)

Observing that S(t) and S(t + h) are independent for IhI > 1, and using (13),
we can prove that for any A,cr > 0,

P. A a < PA < PaA 1á`íj'

	

(11)

The first inequality in (14) follows from (13) and the remark that
> '+.

	

For the second inequality, observe that

A lá-1Í

(lt.a < 0} C

	

n i

	

sup

	

5N < 0} .
-1

	

(i-1) (a- l(_ t_r(o-~1)-a

By (12), we can easily compute P, ='_ 2 as follows :

J" s, , ~ z
1

z

1

1

	

1
d?r

2,T ,'0

	

0

(R
-

t)a

	

tz
)exp( -

g z +

	

---- - exp(-2)

	

dsdt

t 2

	

9

	

2))

	

t 2 l
exp(- 2 (a' + (1 - u)

	

- exp(- 2)
1
tdt

(exp(-v(us + (1 - u)')) - exp(-v) ) d

l

v

1

	

1

	

T-2

,.'0 ( (i,Z + (1 - ; j)2 - 1)du =
4r .

By (14), we see that, for any fixed u > 0, we have

1
log Pá < lilainf 1 log PA < lial sup 1 log PA <	1 - log Pá

	

(1 ~)
u

	

a .-_ , A

	

A--,,, ,A

	

a+ 1

This in turn implies that 1alog P I is ultimately bounded as i -+ x . It
follows that

	 1 10- Pá - 1 lo- Pá < -+1 sup i ; log PA I -~ 0	+

	

ü

	

A,'á

as r - x which proves the existence of T = lirnA

	

loge;,) together with
the bounds, for any .~ > 0,

-

	

ilogP" < I <

	

100, P", (16)



64

	

P. DEHEUVELS ET AL .

Taking a = 1 in (16) completes the proof of lemma 3 .
Remark . The exact value of F is not known at present .

Similar arguments as above enable us to prove the following
Lemma 4 . For any fixed a E IR there exists a 0 < F(a) < x such that with the
notation of lemma 3,

P (a) = lim - n log
JE

def

	

- -y3+ i + a
0 < i j < n ) }

d
li . . . d?r _ i

7d ~ ~u

1
lire -- log P( sup

	

(t.) < a)~ ,

Furthermore, 1'( .) is strictly decreasing .
Starting from lemmas 3 and 4 and using the Komlós-Major-Tusnady

approximation, one can easily prove the following result .
Lemma 6 . Let 1'= r' (0) and F(a) be as in lemmas 3 and 4 . Assume that
1 < Kv < V is such that K_v - x, K%-/.V - 0, and Ií L. 1 2 logN - 0 as
N - oc . Then, for any fixed a E IR,

lirn

	

K„
log P(I(1V,Kv) < ab. )~ =T (a) .

Furthermore, we have for any integer -m,>- 1

lim P(I((m + 1) n, n) < 0) = P,,
n-^o

and in particular,

lint P(1(2n.,n) < 0) = T-?.
n

	

IT

We may now state our main result concerning the case where
Kv CV/ log log N .
THEOREM 5 . Let K,%• = CN(loglog V) - r . Then

liminf I( .V,Iiv) = l + x. if C < C
if C > f

with probability one .
Proof . First note, by lemma 5, that

P(I(N,Kv) < a K 1 -2 = exp ~- 1I1'(a)(1 + o(1)) }

.
e.yp -(1+0(1))

1 (a)
C, lagiugll

Suppose in the first place that C < F . It follows that there exists an
<r > 0 such that C < F(a) < T . Next, if _ti's,. = exp(k/logk), it follows
evidently that

_~ P(I(N4,K,vt ) <- ci[~vk2) < cc
k=I

h
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Since K_\ t _ ' -K.\-é

	

(logk) -I KN,, ti (loglogNk)'LK\-., standard methods show
that this implies that

which in turn implies the first half of theorem b .
For the second half, assume that C > I' and let 3 < 0 be such that

F < r( :3) < (7 . The same arguments as above show in this case that

P(I(Nk,N,vt ) -< ,9KN~2) = x

In a similar way as before, this enables us to prove that in this case

lin)MK- 1 K-12 I(N,Kv) < 0 a . s .,

which implies the second half of theorem b .
The study of the limiting behaviour of I(N.K_v) when I v -- FN/loglogN

looks a challenging problem . As a special case of this problem we propose
the following question : Does there exist a sequence (Kv) for which
liminf,v_, I(N,Kv) = 0 a . s .?

A result describing the upper classes of I(N,K v) when Kv is big
follows :
THEOREM 6 . (Csörgő-Révész 1979) Let Ií,V be a nondecreasing sequence of
positive integers for which K;\- !5 N, ;1/K_v is non- decreasing and
Kv log-2 N -, x . Then

(i+F)(2Kv (log ,K.V'+loglogN)) 1,2 EuuC(I(.K,v)),

(1- F)(2Kv(log NK -V I +loglogN)) 12 EU L (I(.N,Kv)) .

In the case when Kv = [ o,V] (0 < o < 1) the lower classes of I(N,Kv)
can be described by
THEOREM 7 . (Csáki - Révész 1979) Assume that IV. ,, = [c N] with 0 < u < 1 . Then
it holds

where

that

of

liminfK,v 1 2I(N,Kv) > 0 a . s .,v

	

-

k~2

liminf(211'loglog :N') -1 2I(N,Ii,,,

	

-c,, a . s .

~(2r+1)c.e -

	

L2

r(r+1)

We also mention that Strassen's law of the iterated logarithm implies

limsup(2.'VloglogN)_' 2 I(N,Kv)=,a,12

It seems worth wile to mention that some results on the lower classes

and r = [1/a]

I`(N . Ii ) = ma .x

	

mas
0-'n N --h 0 'Í<h
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are available . In fact we have
THEOREM 8 . (Csáki-Révész 1979) Let Kv be a non- decreasing sequence of
positive integers satisfying the conditions of theorem 6 . Then

T 2

(46+ r)(2&v log (I + --AN)) 1 2 E Lu,(I*(N,hA),

(18-1 - F((llivlog(l+ I~Jv)) 1,2 E CCC(I*(N.A

where AN = [ h N. 1 ] ( log log N) -1
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