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When presented with a large number n which one would like to test

for primality, one usually begins with a modicum of trial division . If n
is not revealed as composite, the next step is often to perform the simple

and cheap test of computing an-1 mod n for some pre-chosen number a > 1

with (a,n) = 1 . If this residue is not 1 , then n is definitely com-

posite (by Fermat's little theorem) and we say a is a witness for n

If the residue is 1 , then n is probably prime, but there are excep-

tions . If we are in this exceptional case where

ao-1 ∎ 1 mod n and n is composite

then we say a is a false witness for n , or equally, that n is a

pseudoprime to the base a .

The problem of distinguishing between pseudoprimes and primes has been

the subject of much recent work . For example, see (4] .

Let

4(n) = la mod n : an-1 ∎ 1 mod n}, F(n) = #9(n) .

Thus, if n is composite, then a(n) is the set (in fact, group) of

residues mod n that are false witnesses for n and F(n) is the number

of such residues . If n is prime, then F(n) = n - 1 and &(n) is the

entire group of reduced residues mod n . For any n , Lagrange's theorem

1 Extended abstract, details to appear elsewhere .
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gives

F(n)j+(n)

where • is Ruler's function .

There are composite numbers n for which F(n) = •( n), such as

n = 561 . Such numbers are called Carmichael numbers and probably there are

infinitely many of them, but this has never been proved . It is known that

Carmichael numbers are much rarer than primes .

At the other extreme, there are infinitely many numbers n for which

F(n) = 1 . For example, any number of the form 2p will do, where p is

prime . It is possible to show that while these numbers n with F( n) = 1

have asymptotic density 0 , they are much more common than primes .

So what is the normal and/or average behavior of the function An)?
It is to these questions that this paper is addressed . We show (where 2'
denotes a sum over composite numbers)

(1)

	

. 1' F( n) > x
15/23

nsx

for x large and

( 2)

	

x 1' F(n) S x exp(-(l+o(1)) log x logloglog x/loglog x}
nSx

as x 4 o . We conjecture that equality holds in (2) . Our proof of the

lower bound (1) uses recent work of Balog (2) on the distribution of primes

p such that all primes in p-1 are small . With continued improvements

expected on this kind of result, the exponent 15/23 will probably "creep

up" towards 1 .

Let L(x) = exp(log x logloglog x/loglog x) . Let P4 (x) denote the

number of n S x such that n is a pseudoprime to the base a . Thus

Pa(x) is the number of composite n S x with a mod n s a(n) . For a

fixed value of a , the sharpest results known on 8(x) are that



(3)
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exp{(log x)5/14) < PP(x) < x L(x) -1/2

for all x a x0 (a) - see [5], [6] . (Using Balog's result, we may replace

the "5/14" in the lower bound with 15/38 .) We trivially have

I Pa (x)

	

a

	

I' F(n)
aSX

	

nSX

On the other hand

P (x) 5

	

1 '

	

1

	

1
aSx a

	

nSx

	

aSX
an-1 ∎ 1 mod a

5

	

1'

	

F(n) (n + 1)
J75X

Thus, by using partial summation and (1), (2) we can obtain a result that

is, on averge, much better than (3) :

X 15/23< 1 I P (x) S X
L(x)-1 + o(1)

X aSx a

for x large .

We can compute the geometric mean value of F(n) with more precision :

there are positive constants c,, c2 such that

( 5 IF(n)) 1/X = c2 (log x) 01 + 0(1)
nSx

as x 4 m . If the geometric mean is taken just for composite numbers,

then the result is the same except that c2 is replaced by c2/e .

Concerning the normal value of F(n) , we show that log F(n)/loglog n

has a distribution function D(u) . That is, D(u) is the asymptotic

density of the integers n for which

F(n) 5 (log n) u .

The function D(u) is continuous, strictly increasing, and singular on

[0,m) . Moreover, D(0) = 0 and D(+ m) = 1 . Thus, for example, the set

of n with F(n) = 1 has density 0 .
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The starting point for our results is the elegant and simple formula

of Monier [3] and Baillie-Wagstaff [1] :

(4)

	

F(n) = II (p-1, n-1)
Pin

where p denotes a prime . For example, (4) immediately implies F(2p) = 1 .

We are also able to prove analogous results for certain pseudoprime

tests more stringent than the Fermat congruence, namely the Euler test and

the strong pseudoprime test . It is to be expected that there will be

similar results for all Fermat-type tests ; for example, the Lucas tests .

Such an undertaking might gain useful insights into the nature of these

tests .

Finally we address some further questions including the maximal order

of F(n) for n composite, the nature of the range of F the normal number

of prime factors of F(n) , and the universal exponent for the group S(n) .
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