On the representing number of intersecting families

By
M. Algner, P. Erdös and D. Grieser
Herrn Professor Pickert zum 70. Geburtstag in Verehrung gewidmet

1. Introduction. One of the best-known results in extremal set theory is the Theorem of Erdös-Ko-Rado [3]:

Suppose $n \geqq 2 k$, and let $M \mathbb{R}$ be a family of k-subsets of an n-set M such that any two members of \mathfrak{M} intersect non-trivially, then $|\mathfrak{M}| \leqq\binom{ n-1}{k-1}$. Furthermore, the bound can be attained, and the extremal families are precisely the families $M_{a}=\{X \ni a: a \in M\}$ for $k \geqq 3$. Many proofs of this result have been given, in addition to the original proof see e.g. $[4,9,10]$. Since all the members of an extremal familiy $9 \mathbb{M}$ have an element in common, we say that $¥ \mathbb{R}$ has representing number 1 .

What if we do not allow the sets of \mathfrak{P} to have an overall nontrivial intersection? How large can then $\mathfrak{P R}$ be? The answer to this question has been given by Hilton-Milner [8] with a further proof appearing e.g. in [6]: Let פR be an intersecting family of k-subsets of an n-set M such that $\bigcap_{X \in=刃 n} X=0$, then $|\mathfrak{M}| \leqq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$ for $n>2 k$. Again the extremal families are characterized. Since the members of \mathfrak{M} are allowed to contain one of two points, but not a single one we say that \mathfrak{M} has representing number 2 .

In this paper we estimate the cardinality of an intersecting family with an arbitrary representing number $r, 1 \leqq r \leqq k$. We first give the relevant definitions. All sets will be assumed to be finite. The collection of all k-subsets of a set M will be denoted by $\binom{M}{k}$. We say that a family \mathbb{M} is intersecting if any two members of \mathfrak{M} have a non-trivial intersection.

Definition. Let M be a family of sets, and R a single set. R is said to represent m or be a representing set for \mathfrak{M} if $R \cap X \neq \emptyset$ for all $X \in \mathfrak{M}$. \mathfrak{M} has representing number r if r is the cardinality of a smallest set representing W.

Since an intersecting family $9 \mathfrak{H}$ is represented by every one of its members we note that the representing number r of such a family satisfies $r \leqq \min (|X|: X \in \mathfrak{P})$. In particular, if $\mathfrak{P I} \subseteq\binom{M}{k}$ then $1 \leqq r \leqq k$.

Theorem. Let $n, r_{+} k$ be natural numbers with $1 \leqq r \leqq k \leqq n$. Denote by $g(n ; r, k)$ the maximal cardinality of an intersecting family $m \subseteq\binom{M}{k}$ of an n-set M with representing number r. Then there are constants $c_{r, k}, C_{r, k}$ only depending on r and k, such that

$$
c_{r, k} n^{k-r} \leqq g(n ; r, k) \leqq C_{r, k} n^{k-r} .
$$

Sections 2 and 3 are devoted to a proof of this result with a few additional comments appearing in Section 4.
2. Proof of the upper bound. This section establishes the existence of the constant $C_{r, k}$ as spelled out in the statement of the theorem. We divide the proof into a series of lemmas. First we need a definition.

Definition. Let \mathfrak{Q} be a family of sets and let $u \in \mathrm{~N}, u>1$. A $\Delta(u)$-system of $\mathscr{2}$ is a subfamily $\mathfrak{B} \subseteq \mathscr{Q}$ such that
(i) $|\mathfrak{B}|=u$,
(ii) any two members of \mathfrak{B} have the same intersection C. C is called the stem of \mathfrak{B}.

The following lemma appeared in [2]. The easy proof goes by induction on a.
Lemma 1. Let $a, b \in \mathbb{N}, b>1$. Then there exists a smallest number $f(a, b) \in \mathbb{N}$ such that any family of sets \mathfrak{Q} with $|\mathfrak{Q}|>f(a, b)$ and $(X \in \mathfrak{H} \Rightarrow|X| \leqq a)$ possesses a $\Delta(b)$-system. Furthermore, $f(a, b) \leqq a!(b-1)^{a}$.

Lemma 2. Let \mathfrak{Q} be a family of sets with $X \in \mathfrak{Y} \Rightarrow|X| \leqq k$. Let, further, \mathfrak{B} be a family of sets such that every $X \in \mathfrak{B}$ is a representing set of $\mathfrak{2}$ and satisfies $|X| \leqq b$. If $|\mathfrak{B}|>f(b, k+1)$, then there exists a representing set Y of $\mathfrak{Z 1}$ with $|Y| \leqq b-1$ and $Y \leqq Z$ for some $Z \in \mathfrak{B}$.

Proof. Let $\left\{Y_{1}, \ldots, Y_{k+1}\right\}$ be a $\Delta(k+1)$-system of \mathcal{B} with $\left|Y_{i}\right| \leqq b$ for all i and stem Y (guaranteed by Lemma 1). Then $|Y| \leqq b-1, Y \subseteq Y_{i} \in \mathfrak{B}$. We claim that Y represents 2 . If, on the contrary, there existed $X \in \mathfrak{Q}$ with $X \cap Y=\emptyset$ then X would have to intersect all the disjoint set $Y_{1}-Y, Y_{2}-Y, \ldots, Y_{k+1}-Y$, in contradiction to $|X| \leqq k$.

To facilitate the induction used in the proof of the theorem we introduce the following function.

Definition. Let $n, r, k \in \mathbb{N}$. For $\ell \in \mathbb{N}, \ell \leqq k$ define the functions $h_{\ell}^{\prime}: \mathbb{Q} \rightarrow \mathbb{Q}$

$$
\begin{aligned}
& h_{k}(x)=x \\
& h_{\ell}(x)=\frac{1}{\binom{n-r}{k-r}}(x-f(k, k+1))-\sum_{i=c+1}^{k-1} f(i, k+1) \text { for } \quad \ell<k .
\end{aligned}
$$

The following facts are immediately verified from the definition.

Lemma 3. i) $h_{\ell+1}\left(x-h_{\ell}(x)\binom{n-r}{k-r}\right)=f(\ell+1, k+1)$ for all x,
ii) if $x>\binom{n-r}{k-r} \sum_{i=r}^{k-1} f(i, k+1)+f(k, k+1)$ then $h_{r-1}(x)>0$.

We come to the crux of the proof.
Lemma 4. Let n, k, r and $M, 9 \operatorname{be}$ given as in the statement of the theorem. For a subfamily $\mathfrak{M r}^{\prime} \subseteq \mathfrak{M}$ and $\ell \leqq k$ let

$$
\begin{aligned}
M_{c}^{\prime}= & \left\{X \subseteq M: X \text { represents } M R,|X| \leqq \ell \text { and there exists } Y \in \mathcal{M}^{\prime}\right. \text { with } \\
& X \subseteq Y\} .
\end{aligned}
$$

Then $\mid \mathfrak{X _ { e } |} \geqq h_{e}(|\mathfrak{M}|)$.
Proof. We use downward induction on ℓ. For $\ell=k$ we have $\mathfrak{M}_{k} \supseteq \mathfrak{M}^{\prime}$ and thus $\left|\mathfrak{M}_{k}^{\prime}\right| \geqq h_{k}\left(\left|\mathfrak{M}^{\prime}\right|\right)=\left|\mathfrak{R}^{\prime}\right|$. Suppose we already know that $\left|\mathfrak{M}_{k+1}\right| \geqq h_{z+1}\left(\left|\mathcal{R}^{\prime}\right|\right)$ holds for all subfamilies $\mathfrak{M}^{\prime} \subseteq \mathfrak{M}$. We determine step by step distinct sets $X_{1}, X_{2}, \ldots, X_{\alpha} \in \mathfrak{M}_{e}^{\prime}$ with $\alpha=\max \left(0, \mid h_{(}\left(\left|M^{\prime}\right|\right)\right]$. Let $\alpha>0$ and $1 \leqq \beta \leqq \alpha$. Suppose we have already found sets $X_{1}, X_{2}, \ldots, X_{\beta-1} \in \mathfrak{M r}_{\varepsilon}$. Set

$$
\begin{aligned}
\mathfrak{M}^{\prime \prime} & =\left\{X \in \mathfrak{M}^{\prime}: X \supseteq X_{i} \text { for some } i, 1 \leqq i \leqq \beta-1\right\} \\
\mathscr{R} & =\mathfrak{M}^{\prime}-\mathfrak{M}^{\prime \prime} .
\end{aligned}
$$

Then $\mathscr{\mathscr { R }} \subseteq \mathfrak{M}$ and hence $\left|\tilde{\mathscr{M}}_{\ell+1}\right| \geqq h_{\ell+1}(|\tilde{\mathscr{P}}|)$ by the induction hypothesis. As every X_{i} represents $9 \mathbb{M}$ we have $\left|X_{i}\right| \geqq r$ by the assumption on 97 , and thus

$$
\left|\left\{X \subseteq M: X \supseteq X_{i}\right\}\right| \leqq\binom{ n-r}{k-r} \quad(i=1, \ldots, \beta-1)
$$

From this we infer

$$
\begin{aligned}
|\tilde{M}| & =\left|\mathfrak{M}^{\prime}\right|-\left|\mathfrak{R}^{\prime \prime}\right| \\
& \geqq\left|\mathfrak{M}^{\prime}\right|-(\beta-1)\binom{n-r}{k-r} \\
& \geqq\left|M^{\prime}\right|-(\alpha-1)\binom{n-r}{k-r} \\
& >\left|M^{\prime}\right|-h_{e}\left(\left|\mathbb{M}^{\prime}\right|\right)\binom{n-r}{k-r} .
\end{aligned}
$$

Since $h_{\epsilon+1}$ is strictly increasing we conclude from Lemma 3 (i)

$$
\left|\mathfrak{W}_{c+1}\right| \geqq h_{c+1}(|\tilde{\mathfrak{W}}|)>f(\ell+1, k+1) .
$$

Now Lemma 2 applied to $\mathfrak{A}=\mathfrak{M}, \mathfrak{B}=\mathfrak{M}_{c+1}$ implies the existence of a set X_{p} with $\left|X_{\beta}\right| \leqq \ell$ representing \mathfrak{W} and of $Y \in \mathscr{M}_{\ell+1}$ with $X_{\beta} \sqsubseteq Y . Y$ is, in turn, contained in a set $Z \in \tilde{M}, Y \subseteq Z$, by the definition of \bar{M}_{f+1}. In summary, $X_{j} \subseteq Z \in \mathscr{M} \subseteq \mathcal{M}^{\prime}$. Hence $X_{g} \in \mathfrak{M}_{f}$ and X_{g} must be distinct from all sets X_{1}, \ldots, X_{g-1} since $X_{g}=X_{i}$ would imply $Z \in \mathbb{M}^{\prime \prime}=\mathbb{M}^{\prime}-\widetilde{M}$, whereas $Z \in \mathscr{M}$.

Proof of the upper bound. Suppose, on the contrary, there is no such constant $C_{r, k}$. Then there are n, M and a family M satisfying the assumptions of the theorem with

$$
\begin{equation*}
|\mathfrak{m}|>\binom{n-r}{k-r} \sum_{i=r}^{k-1} f(i, k+1)+f(k, k+1) . \tag{*}
\end{equation*}
$$

Applying Lemma 4 with $M^{\prime}=\mathfrak{M}$ and $\ell=r-1$, we conclude $\left|\mathfrak{M}_{r-1}\right| \geqq h_{r-1}(|M|)$ and thus $\left|\mathcal{R}_{r-1}\right|>0$ by Lemma 3 (ii). But this contradicts the fact that \mathfrak{M} cannot be represented by a set of cardinality less than r, and the proof is complete.

From the inequality (${ }^{*}$) and Lemma 1 we obtain the following estimate of $C_{r, k}$.
Corollary. For given n, r, k and M, \mathfrak{M} as in the statement of the theorem we have

$$
|M| \leqq\left(\sum_{i=r}^{k} i!k^{i}\right) n^{k-r} .
$$

3. Proof of the lower bound. Let r and k be given. The Erdös-Ko-Rado Theorem states $g(n ; 1, k)=\binom{n-1}{k-1}$ for $n \geqq 2 k$, hence $c_{1, k}$ exists. For $r>1$ we use a generalization of the construction in [1] which includes the optimal family of the Hilton-Milner Theorem [8] for $r=2$ and the one given by Frankl [5] for $r=3$ as special cases.

Assume $n \geqq k+(k-1)+\cdots+(k-r+2)+1$. Choose pairwise disjoint sets $\mathrm{S}_{i}(i=0, \ldots, r-2)$ with $\left|S_{i}\right|=k-i$, a subset $T \subseteq S_{0}$ with $|T|=r-1$ and an element $x \notin \bigcup S_{i}$. Denote by $9 R_{i}$ the family

$$
\begin{aligned}
& \mathfrak{M}_{i}=\left\{X: X \supseteqq S_{i},\left|X \cap S_{j}\right|=1 \text { for } 1 \leqq j<i,|X \cap T|=1\right\} \\
& (i=1, \ldots, r-2)
\end{aligned}
$$

and by M_{x} the family

$$
9 M_{x}=\left\{X:|X|=k, x \in X, X \cap S_{i} \neq \emptyset \text { for all } i\right\} \cup\{X:|X|=k, x \cup T \cong X\} .
$$

The family $M=\bigcup_{i=1}^{T-2} 9 M_{i} \cup M_{*} \cup\left\{S_{0}\right\}$ is intersecting, has $T \cup x$ as representing set, and it is readily seen that no smaller set can represent M. Since the second part of M_{x} contains already $\binom{n-r}{k-r}$ sets, the existence of $c_{r, k}$ is established.
4. Families with representing number k. As mentioned before, the precise value of $g(n ; 1, k)$ and $g(n ; 2, k)$ is known whereas the family $9 \mathcal{M}$ of the previous section was shown to be optimal in [5] for $r=3$ and $n \geqq n_{0}(k)$. Let us go to the other end and consider $g(n ; k, k)$.

The theorem says in this case that $g(n ; k, k)$ is independent of n for $n \geqq n_{0}(k)$, so we denote it shortly by $g(k)$.

The corollary in Sect. 2 gives $g(k) \leqq k!k^{k}$, and it was shown in [1] that, in fact, $g(k) \leqq k^{*}$. To gain further insight into $g(k)$ we observe that any maximal family
$\mathfrak{M} \subseteq\binom{M}{k}$ with representing number k must include all representing sets of $M \mathbb{R}$ of size k. This, in turn, immediately yields the following alternate characterization.
Proposition. Let $\mathfrak{M} \subseteq\binom{M}{k}$ be an intersecting family. Then the following condi-
tions are equivalent:
i) \mathfrak{M} is maximal with representing number k.
ii) \mathfrak{M} is maximal with respect to the condition that to every $X \in \mathfrak{M}, x \in X$ there exists $Y \in \mathfrak{M}$ with $X \cap Y=\{x\}$,
The construction of Erdös and Lovász in [1] yields $g(k) \geqq k!\sum_{i=1}^{k} \frac{1}{i!}$, and thus $g(k) \geqq(e-1) k!$ for $k \rightarrow \infty$. For small k, we have $g(1)=1, g(2)=3$. Using the preceding proposition it can be easily shown that $g(3)=10$ and, with a little more work, $g(4)=41$ which was also found in [7]. Hence for these values, the construction in [1] is optimal, and it is quite plausible that optimality always holds.

Two interesting questions come to mind: First, improve the bounds on $g(k)$, and, secondly, estimate the threshold value $n_{0}(k)$.

Acknowledgement. The authors are grateful for some very useful comments by Z. Füredi who independently proved our main theorem.

References

[1] P. ErDös and L. Lovisz, Problems and results on 3-chromatic hypergraphs and some related questions. In: Finite and Infinite Sets (A. Hajnal et al,, eds.). Proc. Coll. Math. Soc. J. Bolyai 10, 609-627 (1974).
[2] P. Erdös and R. Rado, Intersection theorems for systems of sets. J. London Math. Soc. 35, 85-90 (1960).
[3] P. Erdós, C. Ko and R. Rado, Intersection theorems for systems of finite sets. Quart. J. Oxford Ser. 12, 313-320 (1961).
[4] D. Daykin, Erdös-Ko-Rado from Kruskal-Katona. J. Combin. Theory (A) 17, 254-255 (1974).
[5] P. Frankl, On intersecting families of finite sets. Bull. Austral. Math. Soc. 20, 363-372 (1980).
[6] P. Frankl and Z. Füredt, Non-trivial intersecting families. To appear.
[7] D. Hanson and B. Toft, On the maximum number of vertices in m-uniform cliques, Ars Combin. (A) 16, 205-216 (1983).
[8] P. Hilton and E. Milner, Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 18, 369-384 (1967).
[9] G. Katona, A simple proof of the Erdös-Ko-Rado theorem. J. Combin. Theory 13, 183-184 (1972).
[10] R. Wiuson, The exact bound in the Erdös-Ko-Rado theorem. Combinatorica (2-3) 4, 247-257 (1984).

Eingegangen am 28, 8. 1986
Anschriften der Autoren:
M. Aigner und D. Grieser
II. Math. Institut

Freic Universităt Berlin,
Arnimallee 3
D-1000 Berlin 33
P. Erdös

Math. Instifut
Ungarische Akademic der Wissenschaften
Realtánoda u. 13-15
H-1053 Budapest

