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ABSTRACT : In this papes we present a number of unsolved problems of
the simple, symmetric random walk together with the relevant known
results .

l . INTRODUCTION

We consider the simple, symmetric random walk on the r-dimensional
integer lattice . It is perhaps surprising how many unsolved problems
remain in this old subject . In this paper we present a number of un-
solved problems together with the relevant known results . We do not give
any proofs but we give as many references as possible . Together with the
presented unsolved problems we try to indicate whether we believe that
they can be solved by the methods standing at our disposal or we feel
that some new ideas of methods are necessary to settle them .

2 . RANDOM WALK ON THE LINE

Let Xl ,X2 , . . . be a sequence of i .i .d .r .v .'s with
P(X1=+1) = P(Xl=-1) = 1/2

and

	

n
so = O,

	

Sn = E Xi

	

(n=1,2, . . .) .
i=1

Sn is considered as the location of the particle (involved in the
random walk) after n steps .

2 .1 . The favourite values of a random walk

Let
~(x .n) _ # {k : O~_k'n, Sk=x}

be the local time of the random walk, i .e . ~(x,n) is the number of
visits i ., x up to n . A point xn is called a favourite value at the
moment n if the particle visits x n most often during the first n steps
i .e .
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C(xn ,n) = max C(x,n) .
x

The investigation of the properties of the favourite values started
simultaneously by Bass and Griffin (1985) and ourselves (1984) . One can
easily observe that for infinitely many n there are two favourite values
and also for infinitely many n there is only one favourite value with
probability one . More formally speaking let Fn he the set of favourite
values i .e .

F n = {x : ~(x,n) - max ~(x,n)}
and let Fn be the cardinality of Fn . Then

P{ F,I - 2 i .o .} = P{IF, = 1 i .o .} - 1 .
1 .) We do not know wether 3 or more favourite values can occur

infinitely often i .e . we ask :
P{IFn

	

- r i .o .} _ ?

	

(r=3,4,5, . . .) .
We thought that 0 is a favourite value i .e . that is P{0 E Fn .o .}

1 . To our great surprise Bass and Griffin showed that it is not so
and they proved that the favourite values are going to infinity faster
than n 1 / 2 (logn) -ll . In fact they have

P{lim (logn)a

	

of {

	

x e Fn } _ ~} = 11/2

	

,
n}~ n

if a>11 . We showed that the favourite value i .e . larger than
(1-E) (2n loglogn) 1/ 2 i .e .

P{lim sup (1+E)

	

(2n loglogn) -1 / 2 inf { x ,xEFn}=1 i- 1 - 1=1 -
n } -

2 .) We do not know whether the c can be replaced by 0 in the above
statement .

Let a(n) be the number of different favourite values up to n, i .e .
n

a(n) =

	

E Fk . We guess that a(n) is very small i .e . a(n)<
k- 1

(logn) c for some c > 0 but we cannot prove it . Hence we ask
3 .) How can one describe the limit behaviour of a(n)?
4 .) We also ask how long can a point stay as a favourite value i .e .

let 1 < i=i(n) < j-j(n) < n be two integers for which
j
H Fk ? 1

k=i
and j-i=B(n) is as big as possible . The question is to describe the
limit behaviour of B(n) .

5 .) Further if x was a favourite value once, can it happen that the
favourite value moves away from x but later it returns to x again, i .e .
do sequences a n <bn<cn of positive random integers exist such that

Fan
Fb

n
= 0 and Fan Fcn ~ 0

	

(n=1,2, . . .)?

6 .) To investigate the jumps of the favourite values looks also
interesting . Let n=n(w) be a positive integer for which Fn Fn+l =
Then the jump in is defined as

in = P(Fn , Fn+l ) = min {Ix-yJ7 x e Fn, y E F + l} •
The theorem of Bass and Griffin implies that in ? nl~ (logn) -11 i .o .a .s .
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It looks very likely that lim in =

	

a .s . We do not see how one can

describe the limit behaviour of in*

2 .2 Long head-runs

We (1976) studied the length of the longest head-run Zn , i .e . Zn is the
largest integer for which

I(n,Zn) = Zn
where

I(n,k) - max

	

(Sj+k-Sj)

	

(0 - k < n) .
0<j<~n-k

Our 1976 paper contained a complete enough characterization of Z n but
the result was extended by Guibas-Odlyzko (1980), Samarova (1981),
Révész (1982), Ortega-Wschebor (1984), Deheuvels (1985), Deheuvels,
Devroye-Lynch (1986), Deheuvels-Steinebach (1986), Erdös-Révész (1986)
among others . Now we propose some further problems .

Let Zn be the length of the longest tail run, i .e . Zn is the largest
integer for which

I * (n,Zn)
where

I * (n,k) - min

	

(Sj+k-Sj ) .
O~j<~n-k

7 .) How can we characterize the limit properties of Zn-Zn .
A tr vial argument shows P{Z n =Zn i .o .}=1 but it is not clear at all

how big Zn-Zn can be .

Let Zn1) = Zn and let Zn 2) , Zn3) . . . . be the length of the second,
third, . . . longest head-.run up to n .

8 .) We ask about the properties of Znl)-Zn 2) . It is clear again that

P(Z(1)=Z(2) i .e .) = l . The lim sup properties of Z n(1) -Zn(2) look harder .n

	

n
9.) Let kn be the largest integer for which

P{Z(nl)=Z(n2)- . . .=Znkn)
Characterize the limit properties of kn .

2 .3 . On logarithmic and other densities

In many problems on random walk one gets density results only if we
replace ordinary density by some more general concept of density . As an
example we consider the sequence of time points when the particle
returns to the origin . Let

1

	

if

	

Sk=O,
Yk

	

0

	

if

	

Sk~O .
n

Then the sequence ~(O,n) = 1 Yk does not obey law of large numbers but
k=1

Chung and Erdös (1951) proved
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-1
n -1/2

	

1/2fim (logn)

	

S k

	

Yk

	

r

	

a .s .
nom_

	

k=1.
A similar result is due to P .Lévy who investigated the logarithmic

density of those n's for which Sn>O . In fact let

if

	

Sn > O,
if

	

Sn < 0 .

Then P .Lévy proved that

-1 n

	

-1(logn)

	

E

	

k

	

Vk - 1/2

	

a .s .
k=1

In connection with -result we ask :
10 .) Does the sequence

n
(logn)

-1/2
( E k 1 Vk

	

2 loge)
k=1

satisfy the central limit theorem . This question does not seem to be
very hard .

Our next problem is connected to the problem of long head-runs .
Using the same notation as above let

U

	

0

	

if

	

Zn < Z*,
n

	

1

	

if

	

Zn > Zn .

i .e . Un = 1 if the longest head run up to n is longer than the longest
tail run .

11 .) Does the logarithmic density
n

lira (logn) -1 E

	

k-1 Uk
n--

	

k=1
exist with probability one . This problem seems to be not very hard .
2 .4 . Rarely visited points
It is easy to see that for infinitely many n almost all paths assume
every value at least twice which they assume at all, i .e . let

fr (n) _ # {k : ~(k,n) = r}
be the number of points visited exactly r-times up to n . Then

P{fl(n) = 0 i .o .} = 1 .
12 .) We do not know if for inifinitely many n almost all paths

assume every value at least (r+l)-times (r=2,3, . . .) which they assume
at all, i .e . let

r
E

	

fj(n) = gr(n)
j=1

and we ask
P{gr (n) = 0 i .o .} _ .

We would guess that this probability is 0 if r > 2 but perhaps it is 1
if r=2 .

13 .) For every r (r may depend on n) investigate
liminf fr (n) and limsup fr (n) .
n -> -

	

11

Vn =
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As already stated liminf fl(n) = 0 . P .Major (1986) proved
n ~ -

Ilim sup

	

z = C

	

a .s .
n

	

log n
where 0 < C <

	

but its exact value is unknown .
Let ei be the i-th unit-vector on Rd i .e . ei=(O,O, . . .O,i,O . . . . 0) and
let X1, X2, . . . be a sequence of i .i .d .r .v .'s with

P { Xl=ei } = P{XI=-ei} = 2d

	

(i=1,2, . . . . d) .

Further let
So-Or

	

Sn=XI+X2+ . . .+Xn

	

(n=1,2, . . .) .

3 . RANDOM WALK IN THE SPACE

Most of the problems formulated in Section 2 can be reformulated in
d-dimension and a number of new problems can be found . At first we give
a few remarks to the already stated problems . Later we present some new
problems .

3 .1 . Multivariate versions of the one dimensional problems .

In connection with the favourite values it is natural to ask
14 .) Does the favourite value of the random walk converge to

inifinity in case d=2?
The answer is clearly positive when d ' 3 and very likely it is

also so in case d=2 but the proof is not clear .
In connection with the rarely visited points a result of Dvoretzky

and Erdös (1950) implies that in case d ' 2 a .s- there will be many
points visited exactly once if n is big enough . In fact we have lim

n-
fr (n) _

	

a .s . if d '_ 2 . Dvoretzky and Erdös as well as Erdös and Taylor
(1960 and 1960) have some results to describe the limit properties of
fr (n) but a complete description is missing .

3 .2 . Special problems in case d ' 2 .

Let us consider the largest square around the origin completely covered
by the path during the first n steps . Clearly we say that a square
_-A,A_~ x T-A,A_ I is completely covered during the first n steps if for
any x c L-A,A] x [-A,AI there exists a 1 < k = kn(x) < n such that Sk=x .
Let An be the largest integer for which the square r-An ,Anj x

	

An,A~
is completely covered . Clearly lim An =

	

a .s . We ask
n-

15 .) How rapidly converges An to infinity?
Clearly in case d '_ 3 the volume of the largest completely covered

cube around the origin does not go to infinity . However there will be a
completely covered large cube somewhere .
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16 .) What is the volume of the largest completely covered cube in
case d ? 2?

17 .) Where is the largest completely covered cube located?
a) in case d=2 we ask whether the center of this cube converges

to infinity
b) in case d ' 3 it is clear that the center is going to infinity

but the speed is not clear .
Instead of the largest completely covered cube we can consider the

largest "essentially" covered one . For example one can consider the
largest integer Bn --Bn(P) (0<p<1) for which 100

	

2p% of the cube [-Bn ,B~~
is covered during the first n steps .

18 .) Question 15-17 should be reformulated for essentially covered
cubs .

uestion 15 is already formulated in Erdös-Taylor (1960) where an
intutive solution is also given .

The following questions look connected to the above ones
19 .) Between n and n+tn (tn t -) how many new points will be

covered? Sj(n'j<tn ) can be considered as a newly covered point if
(i) Sj ~ Sk (k=0,1,2, . . .,j-1)

or
(ii) Sj X Sk (k=n,n+l, . . .,j-1) .

20 .) How long time do we have to wait after n steps to obtain a new
point? In fact let Zn be the smallest integer for which

Sn+Z

	

# Si

	

(i=1,2, . . .,n) .
How can we characterize Zn ?
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