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Some of these problems were discussed at our recent

meeting at Siófok .

1 . Let there be given n points in the plane in

general position, i .e . no three on a line and no four on

a circle . Let f(n) denote the largest integer so that

these points determine at least f(n) distinct distances .

Determine or estimate f(n) as well as possible . I have

no example to show that

(1)

	

f(n)/n 2 } 0

and, on the other hand, I cannot prove

(2)

	

f(n)/n - - .

I feel that (1) holds, but I am less sure about (2) . An

old problem of mine states that if n points are in

general position and n >n 0 , then it cannot happen that

the points determine n-1 distinct distances so that the

ith distance occurs i times (in some order) . I . Palásti
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and Liu have an example which shows that 7 such points

are possible . f(n) ?n for n >n 0 would of course show

that my conjecture is true .

A related problem states as follows . Let x l , . . .,x n

be in general position . Denote by d(x i ) the number of

distinct distances from x i . Trivially, d(x i ) >_(n-1)/3

for every i . I am sure that there is an absolute constant

c >0 (i .e . independent of n and the position of the

points) so that

(3)

	

D(n) = max d(x i ) > (1 +c)n/3 .
i

Is it true that there is a set x l , . . .,x n (in general

position) for which

(4)

	

D(n) -1 (1 -c)n ?

It is rather frustrating that I got nowhere with (3) and

(4) . Perhaps (3) remains true if we only assume that no

four of our points are on a circle or even if no circle

whose center is one of the x i 's goes through more than

three of the other x,5 s . It would also be of interest to

prove or disprove

(5)

	

E d(x i ) > (1 +c)n 2 /3 .
i=1

An old and no doubt very difficult problem of mine

states as follows . Let x l , . . .,x n be n points in the plane

(not necessarily in general

	

position) . Is it true that

(6)

	

max d(x i ) > cn/(log n)
1/2 ,

i

168



and perhaps even

n
(7)

	

E d(x i ) > cn 2/(log
n)1/2 ?

i=1

It is very easy to show that for some c >O, max d(x i )>cn l/2 ,

The only non-trivial result which points in the direction of (6)

and (7) is an unpublished result of J . Beck, who proved

(8)

	

max d(x i )/n
1/2

i

The proof of (8) is quite complicated .

2 . Croft, Purdy and

	

I conjectured that if n points

in the plane are given then for k
<_n1/2

the number of

distinct lines which contain >_ k of them is

	

less than

cn 2 /k 3 . This conjecture was proved by Szemerédi and

Trotter [11, but the best value of c i s not known . Their

value is almost certainly very far from being best

possible . In particular, if k =

	

we obtain that the

number of distinct lines which contain at least

	

of

our points is less than cam . This result is interesting

since it shows the difference between finite geometries

and points in the Euclidean plane . In a finite geometry

of n =p 2 + p + 1 points one has n lines containing p + 1 > vn

points . The best value of c is not known . It is trivial

and shown by the lattice points in the plane that one

can give n points so that there should be 2 4-n +2 lines

which contain

	

of our points and I thought that perhaps

this is best possible, but Sah showed that one can find

(3 +o(n))V-n such lines . This construction appears for

the first time in the proceedings of this meeting .

Perhaps it gives the best possible value of c .
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3 . Let there be n points in the plane, no five on a
line . Denote by g(n) the maximum number of distinct lines

each containing four of our points . Is it true that

g(n)/n2-,_0? This is an old conjecture of mine and I offer

100 dollars for a proof or disproof . KArteszi proved that

g( n) > c n 1 og n i s possible and Grünbaum [2] proved that

g(n) >c n 3/2 is possible . Perhaps g(n) <C n 3/2 , but this

may be too optimistic .

4 . Let x l , . . ., x n be n distinct points in the

plane . Denote by D(xl, . . .,xn) the number of distinct

distances determined by our points . Put

g(n) =

	

min

	

D(xl, . . .,xn) .
x l , . . .,x n

An old and no doubt very difficult conjecture of mine

states [3]

(9)

	

c 1 * n/(log n)
l/2

< g(n) <c2* n/(log n) 1/2 .

The upper bound is easy and is shown by the lattice

points in the plane, but I offer 500 dollars for a proof

or disproof of the lower bound . Of course, (9) would

follow immediately from (6) .

Here we are not concerned about the value of g(n) .

Let x l , . . .,x n be a set of points which determines g(n)

distinct distances . For which n is it true that x l , . . .,xn

is uniquely determined up to similarity? Clearly this

holds for n =3, the triangle must be equilateral . There

is no uniqueness for n =4 since g(4) =2 and this can be

implemented by a square or by two equilateral triangles

having an edge in common . Also, g(5) = 2 and it seems

that the regular pentagon is the only solution .A detailed
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proof was given by a colleague from Zagreb . (Unfortuna-

tely, I do not have his letter .) Now g(6) =g(7) =3,

g(8) =4 and it is easy to see that there is no uniqueness

here either . I thought that for n >5, g(n) can always

be implemented in more than one way . But a colleague

remarked in conversation : g(9) =4 and is implemented by

the regular nonagon . Is there any other way? Recently

this has been decided in the positive by Gy . Hegyi, who

found the following example : the six vertices of a

regular hexagon, its center and the mirror images of the

center with respect to two neighbouring sides . Is it true

that for n > n D , g(n) can always be implemented in more

than one way? At the moment I do not see how to attack

this problem .

5 . Let there be given n points in the plane . Denote

by f(n) the largest integer so that for every choice of

the n points there should be f(n) of them no two of which

have distance 1 . A simple example of L . and W . Moser

shows that f(n) s2n/7 . L . Székely [4] proved that

f(n) >n/5, and in fact a somewhat sharper result . De-

termine f(n) as accurately as possible . In particular,

is it true that f(n) >n/4?

A related problem states as follows : Let there be

given n points in the plane and assume that 1 is the

shortest distance between any two of them . Join two of

them if their distance is 1 . This graph is clearly

planar . Denote by g(n) the largest integer such that

this graph always has an independent set of size g(n) .

I thought that perhaps g(n) = n/3 but F . Chung and

R . L . Graham, and independently J . Pach, gave a construc-

tion which shows g(n) <_ 6n/19 . Their construction appears

in Fig .I .
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By the way R . Pollack [51 has a simple proof of

g(n) >_n/4 . The determination of g(n), or even lim g(n)/n,

is perhaps not quite easy .

6 . An old theorem of Anning and myself [61 states

that if S is an infinite set in the plane so that the

distance between any two points of S is an integer,

then S must be linear . If we only know that the distances

must all be rational, S does not have to be linear but

probably must have very special structure . Ulam conjectured

40 years ago that S cannot be everywhere dense and

Besicovitch (independently) conjectured that the set of

limit points of S cannot contain some convex n-gon for

n > n 0 .

An old problem whose origin I cannot trace states :

Are there for any n, n points in general position, i .e .

no three on a line and no four on a circle, so that all

the (2) distances are integers? J . Lagrange [81 found

six such points, see Fig .2 . Harborth just wrote me that
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he and Kemnitz have shown this was the example with

minimal diameter, and in fact the only one with diameter

at most 220 .

87

85

17

136

	

158

6

	

85

87

Figure 2

7 . During our meeting, G . Fejes Tóth and I raised

the following problem : Can one find a finite set of

unit intervals in the unit square, no two of which

intersect and which are maximal with respect to this

property? To my surprise, Danzer found a simple example

(Fig .3) . This costed me 10 dollars .

Another example was found by another participant of our

meeting (Fig .4 where, say, the elongation of the upper

side of the lower left quadrangle passes through the

lower right vertex of the square) . Evidently in both

examples the position of the segments can be varied . It

is not clear what happens if the unit square is replaced

by other regions . Also it is not clear what happens in

the unit square if we insist that the only common point
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Figure 3

two of our intervals can have is their endpoint . Let R

be any region and let there be given in R a maximal set

of disjoint unit intervals . Can such a set ever be de-

numerable?

Figure 4
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8 . Another old problem of mine states : The vertices

of a convex n-gon determine at least [Z] distinct

distances . This conjecture was proved by Altman [7] . I

further conjectured that in a convex n-gon there always

is a vertex so that the number of distinct distances

from this vertex is at least [n] . As far as I know this

conjecture is still open . I also conjectured that in a

convex n-gon there always is a vertex which has no three

other vertices equidistant from it . This conjecture was

disproved by Danzer, his

	

example appears in Fig .5 . This

Figure 5

is a convex nonagon A 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 of threefold

rotational symmetry, satisfying A 1 A2 =A 1 A3 =A 1 B 3'

B 1 B 2 = B 1 C 2- B,B 3' C l C 2 = C 1 A 3 = C l C 3 . It is constructed in

the following way . Take a Réuleaux triangle A 1 A 2 A 3 .

Elongate the arc A 3 A 1 beyond A 1 and choose a point B 1

on this elongation, close to A 1 . Analogously we define

B 2 , B 3 (taking into account the threefold rotational
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symmetry of the figure) and we draw the Reuleaux triangle

B i B 2 B 3 . Denote Bi the midpoint of the side BiBi+1 of

this Reuleaux triangle (B 4 =B 1 ) . Choose a point C, on

the arc B 1 Bi of the side B 1 B 2 and analogously choose

points C 2 , C 3 , by taking into account the rotational

symmetry of the figure . For C 1 =B I we have C 1C3 - B 1 B3

> BiA 3 = C 1 A 3 , while for C 1 = Bi we have C 1 C 3 = B i B 3 <

< BIA3 =CiA3 (provided B 1 A 1 is sufficiently small) .

Hence for some intermediate position of C 1 we will have

(C 1 C 2 =)C l C 3 =C I A 3 . The nonagon constructed with this C 1
will satisfy all the requirements .

Perhaps in every convex polygon there is a vertex which

does not have four other vertices equidistant from it .

Finally Szemerédi conjectured that if x 1 , . . . , x n are n

points no three on a line then they determine at least

[Z1 distinct distances, but he can only prove this with

[ 11 .
G . Purdy and I plan to publish a survey article

soon on this and related problems and perhaps later a

book .

For many related problems see W . Moser, Problems in

Discrete Geometry, Mimeograph Notes (1981) . A new edition

will soon appear in collaboration with J . Pach .
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