SOME REMARKS ON INFINITE SERIES

P. ERDÕS, I. JOÓ and L. A. SZÉKELY

Dedicated to Professor K. Tandori on the occasion of his 60 th birthday

In the present paper we investigate the following problems. Suppose $a_{n}>0$ for $n \geqq 1$ and $\sum_{n=1}^{\infty} a_{n}=\infty$.
$\mathrm{N}^{\circ} 1$. Does there exist a sequence of natural numbers $N_{0}=0, N_{i} / \infty$, such that it decomposes the series monotone decreasingly:

$$
\begin{equation*}
\sum_{j=N_{i}+1}^{N_{t+1}} a_{j} \geqq \sum_{j=N_{i+1}+1}^{N_{i t 2}+2} a_{j} \quad(i=0,1,2, \ldots) ? \tag{1}
\end{equation*}
$$

In order to state the second problem we define the index $n_{k}(c)$ as the minimum m such that

$$
\begin{equation*}
k c \leqq \sum_{j=1}^{m} a_{j} . \tag{2}
\end{equation*}
$$

Now the second problem is as follows.
$\mathrm{N}^{\circ} 2$. What is the relation between the behaviour of $\sum_{1}^{\infty} a_{n}^{2}$ and the typical behaviour of $\sum_{k=1}^{\infty} a_{n_{k}(c)}$ (c is variable)? As it turns out, the two problems are related. Problem $\mathrm{N}^{\circ} 1$ is motivated by the fact, that for every non-negative continuous function $f:[0, \infty) \rightarrow \mathbf{R}$ it is easy to define a sequence x_{i} / ∞ such that $\int_{x_{n}}^{x_{n+1}} f \geqq$ $\geqq \int_{x_{n+1}}^{x_{n+2}} f(n=0,1, \ldots)$.

Theorem 1. Suppose $a_{n}>0, a_{n} \geqq a_{n+1}$ for every $n \geqq 1, \sum_{n=1}^{\infty} a_{n}=\infty$. Then for every $c>0$

$$
\sum_{n=1}^{\infty} a_{n}^{2} \quad \text { and } \quad \sum_{k=1}^{\infty} a_{n_{k}(c)}
$$

are equiconvergent.

Proof. ${ }^{1}$ We may suppose $a_{n} \backslash 0$, since in the opposite case the statement is trivial. Hence we have for $k>K(c)$

$$
n_{k+1}(c)>n_{k}(c)
$$

and

$$
\sum_{i=n_{k}(c)+1}^{n_{k+1}(c)} a_{i}=c+o(1) .
$$

In view of monotonicity of $\left(a_{n}\right)$ for $k>K(c)$

$$
\left(\sum_{i=n_{k}(c)+1}^{n_{k+1}(c)} a_{i}\right) a_{n_{k}(c)} \geqq \sum_{i=n_{k}(c)+1}^{n_{k+1}(c)} a_{i}^{2} \geqq\left(\sum_{i=n_{k}(c)+1}^{n_{k+1}(c)} a_{i}\right) a_{n_{k+1}(c)},
$$

and the equiconvergence holds.
Theorem 1 makes possible to give a partial solution for problem $\mathrm{N}^{\circ} 1$.
Theorem 2. Suppose $a_{n}>0, \sum_{n=1}^{\infty} a_{n}=\infty$.
(i) If $\left(a_{n}\right)$ has a majorant $\left(b_{n}\right) \in l_{2}$ with $b_{n} \geqq b_{n+1}$ for $n \geqq 1$, then $\sum a_{n}$ has the decomposition required in (1).
(ii) If $a_{n} \geqq a_{n+1}$ for $n \geqq 1,\left(a_{n}\right) \notin l_{2}$, then there exists a series $\sum b_{n}$ having no decomposition and $1 / 3<a_{n} / b_{n}<3$.

Proof. In the first step we prove the existence of the required decomposition (1) for $\left(b_{n}\right)$. Let $N_{0}=0$. We define N_{1} so large, that

$$
K_{1}:=\sum_{j=1}^{N_{1}} b_{j}
$$

obeys

$$
\begin{equation*}
K_{1} / 6>\max _{n} b_{n} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{n_{k}\left(K_{1} / 3\right)}<K_{1} / 2 . \tag{4}
\end{equation*}
$$

The number N_{1} exists, since $\sum_{k=1}^{\infty} b_{n_{k}(c)}$ is finite by Theorem 1 and monotone decreasing in c, and K_{1} is as large as we want.

Suppose $N_{0}, N_{1}, \ldots, N_{i}, N_{i+1}$ are defined and

$$
K_{i}:=\sum_{j=N_{i}+1}^{N_{i+1}} b_{j} \geqq K_{1} / 2 .
$$

Let N_{i+2} be the largest index for which

$$
\sum_{j=N_{i}+1}^{N_{i+1}} b_{j} \geqq \sum_{j=N_{i+1}+1}^{N_{i+2}} b_{j} .
$$

[^0]By (3) we have $N_{i+2}>N_{i+1}$. We prove $K_{i+1}:=\sum_{j=N_{i+1}+1}^{N_{i+2}} b_{j} \geqq K_{1} / 2$, what means, N_{i} and K_{i} are defined for $i>0$ with $K_{1} \geqq K_{2} \geqq K_{3} \geqq \ldots$.

Assume m is the least integer with $K_{m+1}<K_{1} / 2$. First, $K_{m} \geqq K_{1} / 2$ and by the choice of N_{i} 's and by (3) $K_{m}-K_{m+1}<K_{1} / 6$, hence $K_{m+1} \geqq K_{1} / 3$. On the other hand

$$
K_{1}-K_{m+1} \leqq \sum_{i=0}^{m+1} b_{N_{i+1}+1} \leqq \sum_{k=1}^{m+1} b_{n_{k}\left(K_{m+1}\right)} \leqq \sum_{k=1}^{\infty} b_{n_{k}\left(K_{1} / 3\right)} .
$$

Using (4) we have $K_{m+1} \geqq K_{1} / 2$, a contradiction.
In the second step set $M_{0}=0$, select M_{1} so large that

$$
K_{1}<\sum_{j=1}^{M_{1}} a_{j}
$$

and let M_{i+2} be the largest integer with

Set

$$
\sum_{j=M_{i}+1}^{M_{i+1}} a_{j} \geqq \sum_{j=M_{i+1}+1}^{M_{i+1} z} a_{j} .
$$

$$
L_{i}:=\sum_{j=M_{i}+1}^{M_{i+1}} a_{j} .
$$

We have to prove $M_{m+2}>M_{m+1}$ for $m>0$. Obviously, $M_{i} \geqq N_{i}$ and

$$
L_{1}-L_{m+1} \leqq \sum_{i=0}^{m+1} a_{M_{i+1}+1} \leqq \sum_{i=0}^{m+1} b_{M_{i+1}+1} \leqq \sum_{i=0}^{m+1} b_{N_{i+1}+1} \leqq \sum_{k=1}^{\infty} b_{n_{k}\left(K_{1} / 2\right)}<K_{1} / 2,
$$

what means $L_{m+1}>K_{1} / 2$, i.e. $M_{m+2}>M_{m+1}$. In order to prove (ii) suppose without loss of generality $a_{1}<1$ and set $f(0)=0$,

$$
f(n):=\left|\left\{k: 2^{-n} \leqq a_{k}<2^{-n+1}\right\}\right|
$$

for $n \geqq 1$. It is well-known that

$$
\sum_{n=1}^{\infty} a_{n}^{2}<\infty
$$

if and only if $\sum_{n=1}^{\infty} f(n) 4^{-n}<\infty$. If $f(n)>0$ we define a strictly monotone increasing sequence $\varepsilon_{n, j}(j=1,2, \ldots, f(n))$ obeying $0 \leqq \varepsilon_{n, j} \leqq 4^{-n}$. For every natural number i there exists a unique m with

$$
f(0)+f(1)+\ldots+f(m-1)<i \leqq f(0)+f(1)+\ldots+f(m) .
$$

We define

$$
\begin{equation*}
b_{i}:=2^{-m}+\varepsilon_{m, i-}, \sum_{=0}^{m-1} f(j), \tag{5}
\end{equation*}
$$

and prove that $\sum b_{i}$ satisfies the requirements of (ii). Obviously, $1 / 3<a_{n} / b_{n}<3$. The sequence $\left(b_{i}\right)$ is monotone increasing in the intervals
of indices, by (5).

$$
\left(\sum_{j=0}^{m-1} f(j), \quad \sum_{j=0}^{m} f(j)\right]
$$

Suppose there exists a decomposition required in (1) for $\sum b_{i}$ with indices $N_{0}=0<N_{1}<N_{2}<\ldots$ and

$$
K_{i}=\sum_{j=N_{i}+1}^{N_{i+1}} b_{j} .
$$

We are going to prove $K_{1}=\infty$, a contradiction. If

$$
\begin{equation*}
\sum_{j=0}^{m-1} f(j) \leqq N_{i}<N_{i+1}<\sum_{j=0}^{m} f(j) \tag{6}
\end{equation*}
$$

then $K_{i}-K_{i+1} \geqq 2^{-m}$, since $N_{i+2}-N_{i+1}<N_{i+1}-N_{i}$ by the strictly monotone increasingness of $\left(b_{i}\right)$ in the above considered interval. Since $K_{1} \geqq K_{2} \geqq K_{3} \geqq \ldots$ by (1), we have

$$
\mid\{i: \text { (6) holds for } i\} \left\lvert\, \geqq \frac{f(m)}{K_{1} \cdot 2^{m}}-3\right. \text {. }
$$

Comparing our estimates we have

$$
K_{1} \geqq \sum_{i=0}^{\infty}\left(K_{i}-K_{i+1}\right) \geqq \sum_{(6) \text { holds for } i}\left(K_{i}-K_{i+1}\right) \geqq \sum_{m} 2^{-m}\left(\frac{f(m)}{K_{1} \cdot 2^{m}}-3\right)=\infty .
$$

M. Szegedy noted, that with a bit more effort one can prove (ii) with $b_{i}=a_{i}(1+o(1))$. We have conjectured that $\left(a_{n}\right) \in l_{2}$ is sufficient for having a decomposition. Recently, the conjecture was proved by M. Szegedy and G. Tardos [1].

Now we investigate what happens if we drop the condition $a_{n} \geqq a_{n+1}$ from Theorem 1. It is clear, that dropping the condition a counterexample can be given for a fixed c, but we have

Theorem 3. Suppose $a_{n}>0, \sum_{n=0}^{\infty} a_{n}=\infty$. If

$$
\sum_{n=0}^{\infty} a_{n}^{2}<\infty, \quad \text { then } \quad X:=\left\{c: \sum_{k=1}^{\infty} a_{n_{k}(c)}=\infty\right\}
$$

is of measure zero, and if

$$
\sum_{n=0}^{\infty} a_{n}^{2}=\infty, \quad \text { then } \quad Y:=\left\{c: \sum_{k=1}^{\infty} a_{n_{k}(c)}<\infty\right\}
$$

is meagre (i.e. of first category).
Proof. In the first case we have for $0<a<b<\infty$

$$
\sum_{k=1}^{\infty} \int_{a}^{b} a_{n_{k}(c)} d c<\infty
$$

what proves the first statement by Beppo Levi's theorem. Indeed, we have for $k>K(c)$

$$
\int_{a}^{b} a_{n_{k}(c)} d c \leqq \frac{1}{k} \sum_{k a \leqq \sum_{i=1}^{j} a_{i}<k b} a_{j}^{2}
$$

and

$$
\sum_{k=1}^{\infty} \int_{a}^{b} a_{n_{k}(c)} d c \leqq \sum_{j=1}^{\infty} a_{j}^{2} \sum_{\frac{1}{b}, \sum_{i=1}^{j} a_{i} \leqq k<\frac{1}{a} \sum_{i=1}^{j} a_{i}} \frac{1}{k}=\sum_{j=1}^{\infty} a_{j}^{2}\left(\log \frac{b}{a}+o(1)\right)<\infty .
$$

In the second case we prove for $0<a<b<\infty$

$$
\sum_{k=1}^{\infty} \int_{a}^{b} a_{n_{k}(c)} d c=\infty
$$

It is trivial, if $\inf _{n} a_{n}=\varepsilon>0$. If not, the previous estimates will be repeated for $a<a^{\prime}<$ $<b^{\prime}<b$ in the inverse direction and

$$
\sum_{k=1}^{\infty} \int_{a}^{b} a_{n_{k}(c)} d c \geqq \sum_{j=1}^{\infty} a_{j}^{2}\left(\log \frac{b^{\prime}}{a^{\prime}}+o(1)\right)=\infty .
$$

The function $c \rightarrow f(c):=\sum_{k=1}^{\infty} a_{n_{k}(c)}$ is lower semicontinuous from the left side since $\lim _{c \rightarrow c_{0}-} f(c) \geqq f\left(c_{0}\right)$, so

$$
H_{i}:=\left\{c: \sum_{k=1}^{\infty} a_{n_{k}(c)}>i\right\}
$$

contains a dense open set $G_{i} \subset(0, \infty)$. This way

$$
\left\{c: \sum_{k=1}^{\infty} a_{n_{k}(c)}=\infty\right\}=\bigcap_{i} H_{i} \supset \bigcap_{i} G_{i}
$$

and

$$
\left\{c: \sum_{k=1}^{\infty} a_{n_{k}(c)}<\infty\right\}
$$

is meagre.
The size of an exceptional set in Theorem 3 is still an open question. A particular answer is given by the next construction.

Theorem 4. X can be residual, and Y can be of cardinality continuum.
Proof. We construct $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$ with a residual X. Suppose $\left\{\alpha_{i}: i \in \mathbf{N}\right\}$ is dense in $(0, \infty)$ and let β_{i} be $\left.\beta_{i}=\alpha_{i-(}^{k} \begin{array}{l}k \\ 2\end{array}\right)$ if $\binom{k}{2}<i \leqq\binom{ k+1}{2}$. For every β_{i} set some segments $a_{j}: j \in I_{i}$, so, that
$-I_{i}$ finite, $a_{j}: j \in I_{i}$ are disjoint,

- on the ray $(0, \infty)$ all $a_{j}: j \in I_{i}$ is on the right hand from all $a_{j}: j \in I_{k}$, where $k<i$,

$$
-\sum_{j \in I_{i}} a_{j}^{2}<\frac{1}{2^{i}}, \quad \sum_{j \in I_{i}} a_{j} \geqq 1,
$$

- all the segments a_{j} have in their interior a multiple of β_{i}.

We cover the rest of the ray with segments $a_{j}: j \in J$ such that $\sum_{j \in J} a_{j}^{2}<\infty$.

If β_{i} is the n-th repetition of α_{k}, there is a neighbourhood V_{k}^{n} of α_{k}, such that $m_{j} \alpha_{k} \in a_{j}\left(m_{j} \in \mathbf{N}\right)$ implies $m_{j} V_{k}^{n} \subset a_{j}\left(j \in I_{i}\right)$. Now clearly $\bigcap_{n}\left(\bigcup_{k} V_{k}^{n}\right)$ is residual and X contains it.

Now we construct a perfect set Y (i.e. of cardinality continuum) in the following way. Set $I_{0}^{1}=[100,101]$, we are going to define closed intervals $I_{n}^{i}\left(i=1, \ldots, 2^{n}\right)$ for $n=1,2, \ldots$ with the property: I_{n}^{i} contains the disjoint intervals $I_{n+1}^{2 i}$ and $I_{n+1}^{2 i-1}$. We have a perfect set $\bigcap_{n}\left(\bigcup_{i} I_{n}^{i}\right)=Y$. In $\bigcup_{i} I_{n}^{i}$ we select 2^{n+1} numbers $x_{1}, \ldots, x_{2^{n+1}}$ independent over the field of rationals, two of which are in int $I_{n}^{i}\left(i=1, \ldots, 2^{n}\right)$. By Kronecker's Theorem for infinitely many α_{j}

$$
\left|\alpha_{j}-k_{i, j} x_{i}\right|<0,001
$$

for $i=1,2, \ldots, 2^{n+1}, k_{i, j}$ integer. We are interested only in $\alpha_{1}, \ldots, \alpha_{n}$. We set an interval $J_{m}^{(n)}(m=1, \ldots, n),\left|J_{m}^{(n)}\right|=1 / 200$ close to α_{j} but right to it, $J_{m}^{(n)}$ not containing any multiple of $x_{1}, x_{2}, \ldots, x_{2^{n+1}}$, right from the previous $J_{i}^{(l)}\left(l<n ; 1 \leqq i \leqq 2^{l}\right)$. Now we define I_{n+1}^{i} as short intervals centered at x_{i}, so that none of the $J_{m}^{(n)}$ $(m=1, \ldots, n)$ intersect any multiple of I_{n+1}^{i}. Finally we define the series $\sum_{n=1}^{\infty} a_{n}$. All the intervals $J_{m}^{(n)}(n=1,2, \ldots ; m=1,2, \ldots, n)$ occur as some $a_{s(n, m)}$ with

$$
\sum_{i=1}^{s(n, m)} a_{i}=\text { the right endpoint of } J_{m}^{(n)} .
$$

The "undefined gaps" in $\sum a_{n}$ we fill with small numbers tending quickly to zero.
It is easy to check, that $\sum a_{n}=\infty, \sum a_{n}^{2}=\infty$, since $a_{n}+0 . \quad c \in Y$ implies $\sum a_{n_{k}(c)}<\infty$, since the multiples of c avoid all the intervals $J_{m}^{(n)}$.

Remark. With a little care we can construct a series with the above properties with $a_{n} \rightarrow 0$.

Problem 1. Is there a topological property φ such that

$$
\left\{c: \sum a_{n_{k}(c)}<\infty\right\} \in \varphi \text { if and only if } \sum a_{n}^{2}<\infty ?
$$

Problem 2. Is there a series $\sum a_{n}^{2}<\infty$ in Theorem 3 with Y of positive measure?

REFERENCE

[1] Szegedy, M. and Tardos, G., On infinite series, Studia Sci. Math. Hungar. (to appear).
(Received November 12, 1984)

[^1]
[^0]: ${ }^{1}$ The present simple proof is due to G. Petruska.

[^1]: P. Erdōs

 MTA MATEMATIKAI KUTATÓ INTÉZETE
 POSTAFIÓK 127
 H-1364 BUDAPEST
 I. Joó and L. A. Székely

 EƠTVÖS LORÁND TUDOMÁNYEGYETEM
 TERMÉSZETTUDOMÁNYI KAR
 analízis TANSZÉK
 MUZEUM KRT. 6-8
 H-1088 BUDAPEST
 HUNGARY

