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ASTRAT

Let G be a graph of positive size q, and let n be that posi-

tive integer for which (n21) 5 q < (n22) . Then G is said to have an

ascending subgraph decomposition if G can be decomposed into n sub-

graphs G1 , G2 , --- , Gn without isolated vertices such that G 1
is isomorphic to a proper subgraph of Gi+l

	

for 1 5 1 5 n - 1 .

Several classes of graphs possessing an ascending subgraph decomposi-

tion are described .

1 . Introduction

For graphs F and H, we write F  H to indicate that F is

isomorphic to a subgraph of H . For definitions and notation not pre-

sented here, we follow (1] .

It is not difficult to see that every graph G of positive size

can be decomposed into subgraphs G l , G2, Gk without isolated

vertices such that G l  G2  • • •  Gk.

	

(1)

For example, we could let k = 1 and choose G I to be the graph G

less any isolated vertices, or i€ G has at least two edges, we could

let k = 2 and define G l to be the subgraph induced by an edge e
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problem in graph theory is the determination of those graphs G

possessing a decomposition (1) such that G i = H (1 <- i <- k) for a

given graph H without isolated vertices . (This is referred to as an

isomorphic decomposition of G.) In this article, we introduce a pro-

blem which is, in a certain sense, opposite to the isomorphic decom-

position problem .

Let G be a graph of positive size q . Then there is a maximum

number k of subgraphs Gl , G2 , • • • , Gk , without isolated vertices,

satisfying (1) such that every two of these subgraphs are noniso-

morphic . For such a decomposition then, JE(G i)} < IE(Gi+l )E for

1 <- i <_ k - 1 . Let n be that positive integer for which

(n+l) 5 q < (n22) . Then n is the maximum number of subgraphs possi-

ble in such a decomposition . This motivates the following definition .
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Let G be a graph of positive size q, and let n be that posi-

tive integer with (n+1 ) S q < ( n+2 )

	

Then G is said to have an

ascending subgraph, decomposition if G can be decomposed into n

subgraphs G 1 , G2 , • • •

	

n without isolated vertices such that Gí

is isomorphic to a proper subgraph of Gi+l for 1 <- i S n - 1 . A

graph G of size 10 = ( 42 1 ) having an ascending subgraph decomposi-

tion G1 , G2 , G3, G4 is shown in Figure 1 .
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Figure 1 A graph possessing an ascending subgraph decomposition

It is the following problem that is our primary interest .

The Ascending, Subgraph ecomposition Problem : etermine those graphs

possessing an ascending subgraph decomposition .

If a graph G of size ( n+ 1 ), for some positive integer n, has

an ascending subgraph decomposition Gl , G2 ,

	

Gn, then neces-

sarily G i has size i for all i 0 S i <- n) • If G has size q,

where (n+1) < q < ( n+2 ) for some positive integer n, and has an

ascending subgraph decomposition, then G always has such a decomposi-

tion where the ith subgraph has size i for 1 S í <- n - 1, as we

now show .

Theorem 1 Let G be a graph of size q, where ( n2 1 ) S q < (n22)

for some positive integer n, such that G has an ascending subgraph

decomposition . Then G has an ascending subgraph decomposition

G1 , G2 , • • • , Gn such that G í has size i for 1 S i 5 n - 1 and

Gn has size q - ( 2) .

Proof We have already noted that this result is true if q

	

n+1
( 2 ) ;

thus, suppose that ( n+1 ) < q < ( n+2 ) . y hypothesis, G contains an

ascending subgraph decomposition H 1 , H2 ,

	

Hn. If Hn-1 has size

n - 1, then this decomposition has the desired properties . Assume,

therefore, that the size of H n-1 exceeds n - 1 .
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Necessarily, the size of
of Hl, and define GI to be
to be the graph induced by any
G1  G2 . Since H2  H3, the
H3 of H3 . Let e3 a E(H3) -
so that G3 has size 3 and

having size k, and Gk-l  Gk . Since

ek+1 a E(Hk+1) - E(Hk+1) and define
Gk+i has size k + 1 and Gk  Gk+1'
G1, G2, ••• , Gn-l such that Gi is
for 1 S i S n- 1 and Gi  Gi+1 for i S i 5 n- 2 . The proof is

n-1
G

	

<E(G) - U E(G .)>Gn

	

i=1

	

1

completed by defining

Hl is 1
the graph
two edges
graph H2
E(H3) and define
G2  G3 .

Proceeding inductively, we assume that the graphs

or 2 . Let el be an edge
induced by el . efine G2

e2 of H2, so thate2 and
ís isomorphic to a subgraph

G3 = <E(H3) U {e3}>,

have been defined, where 3 <- k < n - 1, Gk is a subgraph of Hk

9

Hk  Hk+1' the graph

GI, GV . . . , Gk

Gk is
isomorphic to a subgraph Hk+, of of Hk+l . Let

Gk+1

	

<E(Hk+1) U {ek+l}> ; thus
Therefore, there exist graphs
a subgraph of ni having size i

We state the following conjecture .
onjecture . Every graph of positive size has an ascending subgraph
decomposition .

It suffices to verify this conjecture only for graphs of size
(n+l) for n = l, 2,

	

for suppose that the conjecture holds for
these graphs and that G is a graph of size q, where
~m+l) < q < (m22) for a positive integer m . Let H

G obtained by deleting a set E' of q - (m21) edges of G . Then H

has size (M+l) and, consequently, an ascending subgraph decomposition
Hl, H2, , Hm, where Hi has í edges, I S i 5 m . If we define
Gi = Hi for i = 1, 2, ••• , m - 1 and define Gm as that subgraph
of G induced by the edge set E(Hm) U E', then G1, G2,

	

, Gm
is an ascending subgraph decomposition of G .

We now consider some special classes of graphs . For a path or
cycle of length (n+l ), where n a 2, the conjecture holds since
these graphs can clearly be decomposed into n subgraphs
G1, G2, ••• , Gn, where Gi is a path of length i (i <- i <- n) . For

a complete graph Kn+1 of size (n+l), there is a natural star decom-
position; namely, let Gn denote the star of size n at a vertex of
Kn+1' If we remove this star, a complete graph Kn results . We then

be a subgraph of
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proceed inductively to produce the desired decomposition . It is not

difficult to verify that every graph of size 6 has an ascending sub-

graph decomposition : so we need only consider graphs of size ( n21 ),

where n 2 4 .

2 . Ascending Subgraph ecompositions
into Matchíngs

We begin this section by showing that every graph with maximum

degree at most 2 and size (n21) has an ascending subgraph

decomposition . We may then assume that each such graph is the union of

nontrivial paths and cycles . If n = 2 and G = 3 , then G, = P2 ,

G2 "= P 3 is an ascending subgraph decomposition of G ; while if n = 3

and G _ 2 3 , then G1 a P2 , G2 = P3 , G3 _ 3 is an ascending sub-

graph decomposition of G . For every other graph G with maximum

degree at most 2 and size ( n21 ), where 1 5 n <- 4, it is not

difficult to verify that G can be decomposed into subgraphs (Gi l l

1 5 i 5 n, such that Gi a i K2 , which is an ascending subgraph

decomposition of G . This is also the situation for all such graphs

with n > 4, as we now show .

Theorem 2 If G is a graph of size (n2 2 ), n 2 4, having maximum

degree at most 2, then G has an ascending subgraph decomposition

{Gil l 1 5 i 5 n, such that Gi = iK2 .

Proof Suppose that the result is false . Then there exists a graph G

of minimum size
(n22) having maximum degree 2 and no ascending sub-

graph decomposition {G i ), 1 <- i S n, such that Gí "= iK 2 . From the

remark preceding the theorem, n 2 5 . Suppose that G is the union of

the graphs FI , 2

	

Fk, where each Fi (I S i <- k) is a non-

trivial path or a cycle . We consider two cases .

ase 1 Suppose that k k n .

hoose exactly one edge from each of the graphs Fl . F2, Fn , and

let En denote the set of these n (independent) edges . efine Gn =

<En> . Then the graph G - En has maximum degree at most 2 and size

(2) . onsequently, G - En can be decomposed into subgraphs

Gi , G2,

	

Gn-I such that Gí _ iK2 (1 <- i 5 n - 1) . Therefore,

GI , G2 ,

	

Gn is an ascending subgraph decomposition of G such

that Gi = iK2 for 1 5 i 5 n, contrary to assumption .

ase 2 Suppose that k < n .

If, as in ase 1, G has n independent edges, a contradiction is

produced . Assume, then, that G does not contain n independent
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edges . Let ai (1 S i 5 k) be the maximum number of independent edges

of Fi . Then the size of Fi is one of the numbers ta i - 1, tai ,

or 2ai + 1 ; in other words, JE(F i)f 5

	

2a1
+ 1 . Since G does not

k
Uui1Laiu 11 i~üie~iauuet~é eu&6,

	

L a . < PJ . rüitaa~i,

i-1 1
k

	

k

	

k
(n+1 ) _ JE(G)f = I JE(F )1 S 1 (2a, + 1) = 2 1 a . + k < 3n,

2

	

i=1

	

i

	

i=1

	

1

	

i=1 1

so that n < 5, again producing a contradiction .

	

a

As special cases of the above theorem, we state the following

corollary . A linear forest is a forest every component of which is a

path .

orollary . If G is either a linear forest size (n 2 1 ), n 2 1, or a

union of cycles of size ( n2 1 ), n 2 4, then G has an ascending sub-

graph decomposition G l , G2 ,

	

Gn for which Gi = íK 2 for

1 <_ i <- n .

of course, we conjecture that every forest of positive size has an

ascending subgraph decomposition . In the preceding theorem (and corol-

lary) we have described classes of graphs possessing such decomposi-

tions where each subgraph is a matching (i .e ., consists of independent

edges) . We now consider forests having an ascending subgraph

decomposition where each subgraph is a matching . For the purpose of

doing this, we present three preliminary lemmas .

The maximum degree of a graph G is denoted by A(G) and the

edge chromatic number (or chromatic index) of G is denoted by x l ( G) .

We recall the well-known theorem of Vizing [2) that for every graph G

with A(G) 2 1, either X,(G) - A(G) or xi ( G) = A(G) + 1 .

Lemma I If F is a forest with A(F) -> 1, the xl (F) - A(F) .

Proof Let AM = d . Since F is a bipartite graph, F is isomorphic

to a subgraph of a d-regular bipartite graph G (see [1, p .284]) .

Since every regular bipartite graph is

x l (G) = d so that X1 (F) - d .

orollary If F is a forest of size

1 1

1-factorable (see [1, p .235]),

0

n 2 1, and(n2 1 ), where

AM S (n + IM, then F contains n independent edges .

Lemma 2 If F is a forest with AM = d >- 2 and size (n+l), where
c

n - 2d - 2, then F contains at most n vertices of degree d .
Proof Suppose that F contains m vertices of degree d . Then F

contains at least m(d - 2) + 2 end-vertices (see [1, p .75], for

example) . Hence



md + m(d-2) + 2 S

	

S

	

degFv = 2 (nZl) - 2(d-1)(2d-1) .
vV(F)

implying that

2m(d - 1) + 2 S 2(d - 1)(2d -1 >

so that m(d-1) + 1 <- (d-1)(2d-1) or m(d-1) < (d-1)(2d-1) . There-

fore, m < 2d - I = n + 1 .

	

o

Lemma3 If F is a forest with A M - d -> 2 and size ( nZ l ), where

n = 2d - 2, then F contains a set E of n independent edges such

that A(F - E) = d - 1 .

Proof y Lemma 1, X I (F) - d . Let S I , S 2 , • • • , S d be the edge

color classes in a d-edge-coloring of F . There exists a set S i

0 S i S d) such that

2 r ( n+ I )ld 1 - 2d - 2 = n .

For each vertex v of degree d, the set S i contains exactly one

edge that is incident with v . y Lemma 2, the forest F contains at

most n vertices of degree d . Thus, Si contains a collection E

of n independent edges such that A(F - E) - d - 1 .

	

o

We are now prepared to present the desired result .

Theorem 3 Let n and d be integers with n 2 2d - 2 >- 2 . If F is

a forest with A(F) = d and size (n+l), then F has ascending sub-

graph decomposition G I , G2 ,

	

Gn such that G i r. i K2 for

1 SiSn.

Prnnf WA nrnceed by dnuhle induction on n and d . where

n 2 2d - 2 2 2 . Let S(n, d> denote the statement : every linear

forest F with AM = d and size ( n+ l ) has an ascending subgraph

decomposition G I , G2 ,

	

Gn such that Gi = í K 2 for I <- í S n .

y Theorem 2, S(n, 2) is true .

For d > 2, assume that S(m, d - 1) is true for all

m 2 2(d-1) - 2 . We show that S(n, d) is true for all n >- 2d - 2 .
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First we verify that S(2d - 2, d) is true . y Lemma 3, it follows

that if F is a forest with A M - d and size ( n' i ), where

•

	

= 2d - 2, then F contains a set En of n independent edges such

that F' = F - En has maximum degree d - 1 . Thus, F' has size (Z)
and A(F') = d - 1 . Since n - 1

	

2d - 3 > 2(d - 1) - 2 and

S(n - 1, d - 1) is true, F' has an ascending subgraph decomposition

GI , G2 ,

	

, Gn-I such that Gi "- i K2 for 1 <_ i S n - 1 . Letting

Gn

	

<En), we see that S(2d - 2, d) is true .

Let n be an integer such that n > 2d - 2 and assume that

S(n - 1

	

d) is true . We prove that S(n, d) is true . Let F be a

forest with AM - d and size (n+l ) . Since d S (n +/2, it

follows from the corollary to Lemma I that F contains a set E ofn

•

	

independent edges . The forest F' F - En has size (2) . If

p(F') = d, then since n - 1 2 2d - 2 and S(n - 1, d) is true, it

follows that F' has an ascending subgraph decomposition,

GI , G2 ,

	

, Gn-1 such that Gi =" i K2 for 1 <- i S n - 1 . That

S(n, d) is true now follows by letting Gn

	

<En> . Suppose now that

A(F') = d - 1 . Since n - 12 2d - 2 > 2(d - 1) - 2 and

S(n - I,d - I) is true, F' has an ascending subgraph decomposition

GI , G2 , • • • , Gn-I such that G i _ i K2 for 1 S i S n - 1 . The

proof that S(n, d) is true is completed by defining Gn = <En >E

We now show that the bound n 2 2d - 2 presented in the previous

theorem cannot be improved in general . For d L 3, let n = 2d - 3 .

Then (n+l) _ (d - 1)(2d - 3) . Let G be the forest that consists of

•

	

- 1 copies of the star K(.I, d) . The size of G is (.n - 1)d .

Since d 2 3, it follows that (n - 1)d >_ (. n 2 1 ) . elete

(n - 1)d ( n+1 )
2

Since u does not contain n

Hence F does not contain an

edges from G to produce a forest F Of size ( nzl )

independent edges, neither does r .
ascending subgraph decomposition

13
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G I , G2 , • • • , Gn such that G1 0 i K2 for 1 S i S n . Of course,

this does not present a counterexample to our conjecture . This only

says that any ascending subgraph decomposition of F is of a different

type .



3 . Some oncluding Remarks

We have conjectured that every graph G of size ( n+ l ), n 2 1,

can be decomposed into subgraphs G 1 , G2 , • •

	

Gn such that Gi has

size i (1 S i S n) and G1  G2  • • •  Gn . Whether this conjecture

is true or not, there is a class of related problems produced by adding

restrictions to the subgraph Gí . For example, for n k 1, determine

functions f(n) and g(n) such that if A(G) <- f(n), then G has

an ascending subgraph decomposition G1 , G2 , • • • , Gn with

A(Gn) 5 g(n) . y Theorem 3, if G is a forest, then f(n) _ (n + 2)/2

and g(n) - 1 .

Another problem is to determine which graphs G of size ( n 2 1 ),

• 2 1, possess an ascending connected subgraph decomposition, i .e .,

each Gi is connected . Special cases of this would be to require all

subgraphs G i to be trees or, even more restrictively, to require all

subgraphs Gí to be stars . In connection with this last problem, we

present a number-theoretic conjecture .

onjecture Let n 2 2 be an integer, and let a l , a2 ,

k
integers such that n 5 a i <- 2n - 2 and

	

ai

	

( n2 l ) . Then there
i=1

exists a partition of the set S

	

{1, 2, • •

	

n} into k subsets

Sl , S2,

	

• Sk such that for each i (1 <- i 5 k) ai =

	

I

	

j .
jeSI

This conjecture is equivalent to the following graph theoretic

conjecture .

onjecture . Let n k 2 be an integer and let G be a union of stars

Sl , S2,

	

• Sk , such that Si has size a i , where

k
•

	

S ai 5 2n - 2, and G has size E ai (n2l) . Then G has an
i =1

ascending star decomposition .
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