Yousef Alavi, Western Michigan University A.J. Boals, Western Michigan University Gary Chartrand, Western Michigan University Paul Erdös, Hungarian Academy of Sciences Ortrud R. Oellermann, Western Michigan University

ABSTRACI

Let G be a graph of positive size a, and let n be that positive integer for which $\binom{n+1}{2} \leq q<\binom{n+2}{2}$. Then G is said to have an ascending subgraph decomposition if G can be decomposed into n subgraphs $G_{1}, G_{2}, \cdots, G_{n}$ without isolated vertices such that G_{i} is isomorphic to a proper subgraph of G_{i+1} for $1 \leq i \leq n-1$. Several classes of graphs possessing an ascending subgraph decomposition are deacribed.

1. Introduction

For graphs F and H, we write $F C H$ to indicate that F is isomorphic to a subgraph of H. For definitions and notation not presented here, we follow [1].

It is not difficult to see that every graph G of positive size can be decomposed into subgraphs $G_{1}, G_{2}, \cdots, G_{k}$ without isolated vertices such that $G_{1} \subset G_{2} \subset \cdots \subset G_{k}$.

For example, we could let $k=1$ and choose G_{1} to be the graph G less any isolated vertices, or if G has at least two edges, we could let $k=2$ and define G_{1} to be the subgraph induced by an edge e of G añu G_{2} as $G-E$, less añy isclated vertices. A common problem in graph theory is the determination of those graphs G possessing a decomposition (1) such that $G_{i} \cong H(1 \leq i \leq k)$ for a given graph H without isolated vertices. (This is referred to as an isomorphic decomposition of G.) In this article, we introduce a problem which is, in a certain sense, opposite to the isomorphic decomposition problem.

Let G be a graph of positive size q. Then there is a maximum number k of subgraphs $G_{1}, G_{2}, \cdots, G_{k}$, without isolated vertices, satisfying (1) such that every two of these subgraphs are nonisomorphic. For such a decomposition then, $\left|E\left(G_{i}\right)\right|<\left|E\left(G_{i+1}\right)\right|$ for $1 \leq i \leq k-1$. Let n be that positive integer for which $\binom{n+1}{2} \leq a<\binom{n+2}{2}$. Then n is the maximum number of subgraphs possible in such a decomposition. This motivates the following definition.

Let G be a graph of positive size a, and let n be that positive integer with $\binom{n+1}{2} \leq a<\binom{n+2}{2}$. Then G is said to have an ascending subgraph decomposition if G can be decomposed into n subgraphs $G_{1}, G_{2}, \cdots, G_{n}$ without isolated vertices such that G_{i} is isomorphic to a proper subgraph of G_{i+1} for $1 \leq i \leq n-1$. A graph G of size $10=\binom{4+1}{2}$ having an ascending subgraph decomposition $G_{1}, G_{2}, G_{3}, G_{4}$ is shown in Figure 1.

G:

G_{2}

G_{3}

G_{4}

Figure 1 A graph possessing an ascending subgraph decomposition

It is the following problem that is our primary interest.
The Ascending Subgraph Decomposition Problem: Determine those graphs possessing an ascending subgraph decomposition.

If a graph G of size $\binom{n+1}{2}$, for some positive integer n, has an ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n}$, then necessarily G_{i} has size i for all $i(1 \leq i \leq n)$. If G has size a, where $\binom{n+1}{2}<q<\binom{n+2}{2}$ for some positive integer n, and has an ascending subgraph decomposition, then G always has such a decomposition where the i th subgraph has size i for $1 \leq i \leq n-1$, as we now show.
Theorem 1 Let G be a graph of size q, where $\binom{n+1}{2} \leq q<\binom{n+2}{2}$ for some positive integer n, such that G has an ascending subgraph decomposition. Then G has an ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n}$ such that G_{i} has size i for $1 \leq i \leq n-1$ and G_{n} has size $q-\binom{n}{2}$.
Proof We have already noted that this result is true if $q=\binom{n+1}{2}$; thus, suppose that $\binom{n+1}{2}<q<\binom{n+2}{2}$. By hypothesis, G contains an ascending subgraph decomposition $H_{1}, H_{2}, \cdots, H_{n}$. If H_{n-1} has size $n-1$, then this decomposition has the desired properties. Assume, therefore, that the size of H_{n-1} exceeds $n-1$.

Necessarily, the size of H_{1} is 1 or 2 . Let e_{1} be an edge of H_{1}, and define G_{1} to be the graph induced by e_{1}. Define G_{2} to be the graph induced by any two edges e_{2} and e_{2}^{\prime} of H_{2}, so that $G_{1} \subset G_{2}$. Since $H_{2} \subset H_{3}$, the graph H_{2} is isomorphic to a subgraph H_{3}^{\prime} of H_{3}. Let $e_{3} \in E\left(H_{3}\right)-E\left(H_{3}^{\prime}\right)$ and define $G_{3}=\left\langle E\left(H_{3}^{\prime}\right) \cup\left\{e_{3}\right\}\right\rangle$, so that G_{3} has size 3 and $G_{2} \subset G_{3}$.

Proceeding inductively, we assume that the graphs $G_{1}, G_{2}, \cdots, G_{k}$ have been defined, where $3 \leq k<n-1, G_{k}$ is a subgraph of H_{k} having size k, and $G_{k-1} \subset G_{k}$. Since $H_{k} \subset H_{k+1}$, the graph G_{k} is isomorphic to a subgraph H_{k+1}^{\prime} of of H_{k+1}. Let
$e_{k+1} \varepsilon E\left(H_{k+1}\right)-E\left(H_{k+1}^{\prime}\right)$ and define $G_{k+1}=\left\langle E\left(H_{k+1}^{\prime}\right) \cup\left\{e_{k+1}\right\}\right\rangle$; thus G_{k+1} has size $k+1$ and $G_{k} \subset G_{k+1}$. Therefore, there exist graphs $G_{1}, G_{2}, \cdots, G_{n-1}$ such that G_{i} is a subgraph of \tilde{H}_{i} having size i for $1 \leq 1 \leq n-1$ and $G_{i} \subset G_{i+1}$ for $1 \leq i \leq n-2$. The proof is completed by defining $\mathrm{n}-1$

$$
G_{n}=\left\langle E(G)-\bigcup_{i=1}^{U} E\left(G_{i}\right)\right\rangle .
$$

We state the following conjecture.
Conjecture. Every graph of positive size has an ascending subgraph decomposition.

It suffices to verify this conjecture only for graphs of size $\binom{n+1}{2}$ for $n=1,2, \cdots$; for suppose that the conjecture holds for these graphs and that G is a graph of size q, where $\binom{m+1}{2}<a<\binom{m+2}{2}$ for a positive integer m. Let H be a subgraph of G obtained by deleting a set E of $q-\binom{m+1}{2}$ edges of G. Then H has size $\binom{[+1}{2}$ and, consequently, an ascending subgraph decomposition $H_{1}, H_{2}, \cdots, H_{m}$, where H_{i} has i edges, $I \leq i \leq m$. If we define $G_{i}=H_{i}$ for $i=1,2, \cdots, m-1$ and define G_{m} as that subgraph of G induced by the edge set $E\left(H_{m}\right) \cup E$, then $G_{1}, G_{2}, \cdots, G_{m}$ is an ascending subgraph decomposition of G.

We now consider some special classes of graphs. For a path or cycle of length $\binom{n+1}{2}$, where $n \geq 2$, the conjecture holds since these graphs can clearly be decomposed into n subgraphs $G_{1}, G_{2}, \cdots, G_{n}$, where G_{i} is a path of length $i(1 \leq i \leq n)$. For a complete graph K_{n+1} of size $\binom{n+1}{2}$, there is a natural star decomposition; namely, let G_{n} denote the star of size n at a vertex of K_{n+1}. If we remove this star, a complete graph K_{n} results. We then
proceed inductively to produce the desired decomposition. It is not difficult to verify that every graph of size 6 has an ascending subgraph decomposition; so we need only consider graphs of size $\binom{n+1}{2}$, where n 24 .

2. Ascending Subgraph Decompositions into Matchings

We begin this section by showing that every graph with maximum degree at most 2 and size $\binom{n+1}{2}$ has an ascending subgraph decomposition. We may then assume that each such graph is the union of nontrivial paths and cycles. If $\mathrm{n}=2$ and $\mathrm{G} \cong \mathrm{C}_{3}$, then $\mathrm{G}_{1} \cong \mathrm{P}_{2}$, $G_{2} \approx P_{3}$ is an ascending subgraph decomposition of G; while if $n=3$ and $G \cong 2 C_{3}$, then $G_{1} \cong P_{2}, G_{2} \cong P_{3}, G_{3} \cong C_{3}$ is an ascending subgraph decomposition of G. For every other graph G with maximum degree at most 2 and size $\binom{n+1}{2}$, where $1 \leq n \leq 4$, it is not difficult to verify that G can be decomposed into subgraphs $\left\{G_{i}\right\}$, $1 \leq i \leq n$, such that $G_{i} \cong i K_{2}$, which is an ascending subgraph decomposition of G. This is also the situation for all such graphs with $n>4$, as we now show.
Theorem 2 If G is a graph of size $\binom{n+1}{2}, n \geq 4$, having maximum degree at most 2 , then G has an ascending subgraph decomposition $\left\{G_{i}\right\}, 1 \leq i \leq n, \quad$ such that $G_{i} \geqslant i K_{2}$.
Proof Suppose that the result is false. Then there exists a graph G of minimum size $\binom{n+1}{2}$ having maximum degree 2 and no ascending subgraph decomposition $\left\{G_{i}\right\}, 1 \leq i \leq n$, such that $G_{i} \cong i K_{2}$. From the remark preceding the theorem, $n \geq 5$. Suppose that G is the union of the graphs $F_{1}, F_{2}, \cdots, F_{k}$, where each $F_{i}(1 \leq i \leq k)$ is a nontrivial path or a cycle. We consider two cases.
Case 1 Suppose that $k \geq \mathrm{n}$.
Choose exactly one edge from each of the graphs $F_{1}, F_{2}, \cdots, F_{n}$, and let E_{n} denote the set of these n (independent) edges. Define $G_{n}=$ < $\left.E_{n}\right\rangle$. Then the graph $G-E_{n}$ has maximum degree at most 2 and size $\binom{\mathrm{n}}{2}$. Consequently, $G-E_{\mathrm{n}}$ can be decomposed into subgraphs $G_{1}, G_{2}, \cdots, G_{n-1}$ such that $G_{i} \cong i K_{2}(1 \leq i \leq n-1)$. Therefore, $G_{1}, G_{2}, \cdots, G_{n}$ is an ascending subgraph decomposition of G such that $G_{i} \cong i K_{2}$ for $1 \leq i \leq n$, contrary to assumption.
Case 2 Suppose that $k<n$.
If, as in Case 1, G has n independent edges, a contradiction is produced. Assume, then, that G does not contain n independent
edges. Let $a_{i}(1 \leq i \leq k)$ be the maximum number of independent edges of F_{i}. Then the size of F_{i} is one of the numbers $2 a_{i}-1,2 a_{i}$, or $2 a_{i}+1$; in other words, $\left|E\left(F_{i}\right)\right| \leq 2 a_{i}+1$. Since G does not contain " independent edges, $\sum_{i=1}^{k} a_{i} \leqslant a$. Fü̃thert,

$$
\binom{n+1}{2}=|E(G)|=\sum_{i=1}^{k}\left|E\left(F_{i}\right)\right| \leq \sum_{i=1}^{k}\left(2 a_{i}+1\right)=2 \sum_{i=1}^{k} a_{i}+k<3 n,
$$

so that $n<5$, again producing a contradiction.
As special cases of the above theorem, we state the following corollary. A linear forest is a forest every component of which is a path.
Corollary. If G is either a linear forest size $\binom{n+1}{2}, n \geq 1$, or a union of cycles of size $\binom{n+1}{2}, n \geq 4$, then G has an ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n}$ for which $G_{i} \cong i K_{2}$ for $1 \leq i \leq n$.

Of course, we conjecture that every forest of positive size has an ascending subgraph decomposition. In the preceding theorem (and corollary) we have described classes of graphs possessing such decompositions where each subgraph is a matching (i.e., consists of independent edges). We now consider forests having an ascending subgraph decomposition where each subgraph is a matching. For the purpose of doing this, we present three preliminary lemmas.

The maximum degree of a graph G is denoted by $\Delta(G)$ and the edge chromatic number (or chromatic index) of G is denoted by $X_{1}(G)$. We recall the well-known theorem of Vizing [2] that for every graph G with $\Delta(G) \geq 1$, either $X_{1}(G)=\Delta(G)$ or $X_{1}(G)=\Delta(G)+1$.
Lemma 1 If F is a forest with $\Delta(F) \geq 1$, the $X_{1}(F)=\Delta(F)$.
Proof Let $\Delta(F)=d$. Since F is a bipartite graph, F is isomorphic to a subgraph of a d-regular bipartite graph G (see [1, p.284]). Since every regular bipartite graph is 1-factorable (see [1, p.235]), $X_{1}(G)=d$ so that $X_{1}(F)=d$.
-
Corollary If F is a forest of size $\binom{n+1}{2}$, where $n \geq 1$, and $\Delta(F) \leq(n+1) / 2$, then F contains n independent edges.
Lemma 2 If F is a forest with $\Delta(F)=d \geq 2$ and size $\binom{n+1}{2}$, where $\mathrm{n}=2 \mathrm{~d}-2$, then F contains at most n vertices of degree d . Proof Suppose that F contains m vertices of degree d. Then F contains at least $m(d-2)+2$ end-vertices (see [1, p.75], for example). Hence

$$
m d+m(d-2)+2 \leq \sum_{v \varepsilon V(F)} \operatorname{deg}_{F} v=2\binom{n+1}{2}=2(d-1)(2 d-1),
$$

implying that

$$
2 \mathrm{~m}(\mathrm{~d}-1)+2 \leq 2(\mathrm{~d}-1)(2 \mathrm{~d}-1)
$$

so that $m(d-1)+1 \leq(d-1)(2 d-1)$ or $m(d-1)<(d-1)(2 d-1)$. Therefore, $m<2 d-1=n+1$.

D

Lemma 3 If F is a forest with $\Delta(F)=d \geq 2$ and size $\binom{n+1}{2}$, where $\mathrm{n}=2 \mathrm{~d}-2$, then F contains a set E of n independent edges such that $\Delta(F-E)=d-1$.

Proof By Lemma 1, $X_{1}(F)=d$. Let $S_{1}, S_{2}, \cdots, S_{d}$ be the edge color classes in a d-edge-coloring of F. There exists a set S_{i} ($1 \leq i \leq d$) such that

$$
\left.\left|s_{i}\right| \geq \Gamma\binom{n+1}{2} / d\right\rceil=2 d-2=n .
$$

For each vertex v of degree d, the set S_{i} contains exactly one edge that is incident with v. By Lemma 2, the forest F contains at most n vertices of degree d. Thus, S_{i} contains a collection E of n independent edges such that $\Delta(F-E)=d-1$.

We are now prepared to present the desired result.
Theorem 3 Let n and d be integers with $n \geq 2 d-2 \geq 2$. If F is a forest with $\Delta(F)=d$ and size $\binom{n+1}{2}$, then F has ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n}$ such that $G_{i} \cong i K_{2}$ for $1 \leq i \leq n$.

Pronf We pronead by double induction on n and d, where $n \geq 2 d-2 \geq 2$. Let $S(n, d)$ denote the statement: every linear forest F with $\Delta(F)=d$ and size $\binom{n+1}{2}$ has an ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n}$ such that $G_{i} \approx i K_{2}$ for $1 \leq i \leq n$. By Theorem 2, $S(n, 2)$ is true.

For $d>2$, assume that $S(m, d-1)$ is true for all $m \geq 2(d-1)-2$. We show that $S(n, d)$ is true for all $n \geq 2 d-2$.

First we verify that $S(2 d-2, d)$ is true. By Lemma 3, it follows that if F is a forest with $\Delta(F)=d$ and size $\binom{n+1}{2}$, where $n=2 d-2$, then F contains a set E_{n} of n independent edges such that $F^{\prime}=F-E_{n}$ has maximum degree $d-1$. Thus, F^{\prime} has size $\binom{n}{2}$ and $\Delta\left(F^{\prime}\right)=d-1$. Since $n-1=2 d-3>2(d-1)-2$ and $S(n-1, d-1)$ is true, F^{\prime} has an ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n-1}$ such that $G_{i} \cong i K_{2}$ for $1 \leq i \leq n-1$. Letting $G_{n}=\left\langle E_{n}\right\rangle$, we see that $S(2 d-2, d)$ is true.

Let n be an integer such that $n>2 d-2$ and assume that $S(n-1, d)$ is true. We prove that $S(n, d)$ is true. Let F be a forest with $\Delta(F)=d$ and size $\binom{n+1}{2}$. Since $d \leq(n+1) / 2$, it follows from the corollary to Lemma l that F contains a set E_{n} of n independent edges. The forest $F^{\prime}=F-E_{n}$ has size $\binom{n}{2}$. If $\Delta\left(F^{\prime}\right)=d$, then since $n-1 \geq 2 d-2$ and $S(n-1, d)$ is true, it follows that F^{\prime} has an ascending subgraph decomposition, $G_{1}, G_{2}, \cdots, G_{n-1}$ such that $G_{i} \cong i K_{2}$ for $1 \leq i \leq n-1$. That $S(n, d)$ is true now follows by letting $G_{n}=\left\langle E_{n}\right\rangle$. Suppose now that $\Delta\left(F^{\prime}\right)=d-1$. Since $n-1 \geq 2 d-2>2(d-1)-2$ and $S(n-1, d-1)$ is true, F^{\prime} has an ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n-1}$ such that $G_{i} \cong i K_{2}$ for $1 \leq i \leq n-1$. The proof that $S(n, d)$ is true is completed by defining $G_{n}=\left\langle E_{n}\right\rangle$.

We now show that the bound $n \geq 2 d-2$ presented in the previous theorem cannot be improved in general. For $d \geq 3$, let $n=2 d-3$. Then $\binom{n+1}{2}=(d-1)(2 d-3)$. Let G be the forest that consists of $n-1$ copies of the star $\mathbb{K}(1, d)$. The size of G is $(n-1) d$. Since $d \geq 3$, it follows that $(n-1) d \geq\binom{ n+1}{2}$. Delete ($n-1$) $d-\binom{n+1}{2}$ edges from G to produce a forest F of size $\binom{n+1}{2}$. Since G does not contain n independent edges, neither does F. Hence F does not contain an ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n}$ such that $G_{i} \cong i K_{2}$ for $1 \leq i \leq n$. of course, this does not present a counterexample to our conjecture. This only says that any ascending subgraph decomposition of F is of a different type.

3. Some Concluding Remarks

We have conjectured that every graph G of size $\binom{n+1}{2}, n \geq 1$, can be decomposed into subgraphs $G_{1}, G_{2}, \cdots, G_{n}$ such that G_{i} has size $1(1 \leq i \leq n)$ and $G_{1} \subset G_{2} \subset \cdots \subset G_{n}$. Whether this conjecture is true or not, there is a class of related problems produced by adding restrictions to the subgraph G_{i}. For example, for $n \geq 1$, determine functions $f(n)$ and $g(n)$ such that if $\Delta(G) \leq f(n)$, then G has an ascending subgraph decomposition $G_{1}, G_{2}, \cdots, G_{n}$ with $\Delta\left(G_{n}\right) \leq g(n)$. By Theorem 3, if G is a forest, then $f(n)=(n+2) / 2$ and $g(n)=1$.

Another problem is to determine which graphs G of size $\binom{n+1}{2}$, $\mathrm{n} \geq 1$, possess an ascending connected subgraph decomposition, i.e., each G_{i} is connected. Special cases of this would be to require all subgraphs G_{i} to be trees or, even more restrictively, to require all subgraphs G_{i} to be stars. In connection with this last problem, we present a number-theoretic conjecture.

Conjecture Let $n \geq 2$ be an integer, and let $a_{1}, a_{2}, \cdots, a_{k}$ be integers such that $n \leq a_{i} \leq 2 n-2$ and $\sum_{i=1}^{k} a_{i}=\binom{n+1}{2}$. Then there exists a partition of the set $S=\{1,2, \cdots, n\}$ into k subsets $S_{1}, S_{2}, \cdots, S_{k}$ such that for each $i(1 \leq i \leq k) \quad a_{i}=\sum_{j \varepsilon S_{i}} j$.

This conjecture is equivalent to the following graph theoretic conjecture.

Conjecture. Let $n \geq 2$ be an integer and let G be a union of stars $s_{1}, S_{2}, \cdots, s_{k}$, such that s_{i} has size a_{i}, where $n \leq a_{i} \leq 2 n-2$, and G has size $\sum_{i=1}^{k} a_{i}=\binom{n+1}{2}$. Then G has an ascending star decomposition.

REFERENCES

[1] G. Chartrand and L. Lesniak, Graphs \& Digraphs, 2nd Edition. Wadsworth \& Brooks/Cole, Monterey, CA (1986).
[2] V. G. Vizing, On the estimate of a p-graph. Diskret. Analiz. 3(1964) 25-30.

