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ABSTRACT

Given a graph G and a subset S of the vertex set of G, the discrepancy
of S is defined as the difference between the actual and expected num-
bers of the edges in the subgraph induced on S . We show that for every
graph with n vertices and e edges, n < e < n(n - 1)/4, there is an
n/2-element subset with the discrepancy of the order of magnitude of
Vne . For graphs with fewer than n edges, we calculate the asymptotics
for the maximum guaranteed discrepancy of an n/2-element subset . We
also introduce a new notion called "bipartite discrepancy" and discuss
related results and open problems .

1 . INTRODUCTION

Let G be an arbitrary graph with u(G) = n vertices and e (G) = e edges . For
any subset S of the vertex set of G, let the discrepancy of S be defined as the
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difference between the actual and expected numbers of edges in G[S], i .e ., in
the subgraph of G induced by S . That is, let

'll
	 -

dis (S) = e(S) - e	
J
= e(S) - e

S
(lS
	1)

n)

	

n (n - 1)

where e(S) is the shorthand form of e(G [S ]) . The average behavior of dis (S) is
studied in [2] .

In the problem session of the last Southeastern Conference on Combinatorics
in Boca Raton (1986) the senior author raised the following question : is it true
that for every c > 0 there exists a constant c > 0 with the property that any
graph G with n vertices and cn < e < O-cn edges contains two sets of vertices
S and T such that'S~ = Tl = n/2 and !e(S) - e(T)I > en? Our following re-
sult answers this question in the affirmative .

Theorem 1 . Let G be a graph with n vertices and e edges, n < e < n(n - 1)/4,
and assume that n is even . Then one can find two subsets S, T C V(G) such
that ;SI = Tl = n/2 and

le(S) - e(T)I > an ,
where a is an absolute constant .

At first glance, one might naively conjecture (as we did) that in the above
theorem S and T can be chosen to be disjoint . However, if G is any regular
graph and S U T is any partition of its vertex set into two equal halves, then
e(S) and e(T) are always equal .

The following, slightly weaker assertion is still true :

Theorem 2 . For every A. 0 < µ < , there exists a v > 0 such that in any
graph with n vertices and e edges, n < e < n(n - 1) /4, one can find two
disjoint subsets S and T such that Sl = ITl = lftnl and

le(S) - e(T)1 > vtien .

The proofs of the above theorems rely heavily on a generalization of an old
quasi-Ramsey-type result of the first- and the last-named authors [5,6,1] (see
section 2) and on the following Expansion-Retraction Theorem :

Theorem 3 . Let G be a graph with n vertices and assume that ldis (R )I = D
forsomesubsetR C V(G)_Then there exists asubsetS C V(G) with S1 = Ln/21
such that



where the o(I) term goes to 0 as D tends to infinity .
In the case when G has fewer than n edges we have much sharper results . To

formulate them we introduce some further notations . For any graph G with n
vertices, let

and

where the max and min are taken over all Ln/2J-element subsets S C V(G) .
Further, for any c > 0, let

theorem 4 .

(F)

idis (S)J >
4
1 + o(1»D,

d
,
(G) = max dis (S),

d_(G) _ -min dis (S),

d(G) = max(d'(G),d (G)) = maxldis (G)J,

d'(n,c) = min{d - (G) :e = LcnJ},

d - (n, c•) = min{d - (G) : e = LcnJ},

d(,n,c) = min{d(G) :e = LcnJ} .

lim		l
d - (n, c)

	

jc/4

	

if 0 < c < 1/2
(2 - c)/4

	

if l/2 < e :_ I .

c)

	

3c/4

	

if 0 < c <_ 1 /4 ,
d ' (n,

lim

	

(I - c)/4

	

if 1/4 < c

	

1/2,
n

c •/ 4

	

if 1/2 < c• ~ I .

d(n, c)

	

d'(n, c)
(* 4: *)

	

lim

	

= lim

	

if 0 < c < I .
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Note that, in general, d'(G) and d _(G) can be essentially different from
each other. For example, if G consists of two disjoint cliques of size n/2, then
d'(G) - (n'`/ 16) and d_(G) = ( n/16) .

The proofs of Theorems 1-3 and Theorem 4 can be found in sections 2 and
3, respectively . The last section contains some generalizations, related results,
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and open problems . t o particular, we will introduce and discuss a new parameter
of a graph called the "bipartite discrepancy," which depends on the deviance of
the most irregular bipartitions .

2. DISCREPANCY OF GRAPHS

Let G be a graph with n vertices and e edges, and let A and B be two disjoint
subsets of V(G) . Set

dis (A, B) = e(A,B) - e IA I IB

( '2' )

where e(A, B) denotes the number of edges in G running between A and B .

The following theorem is a straightforward generalization of a result in [SJ
and [3] .

Theorem 5 . For every e > 0 there exists f: > 0 such that any graph G with n
vertices and e > n edges contains two disjoint subsets A and B with the prop-
erty that IA I, IB I < en and

Ides (A,B)I > e

	

.

Proof. Assume for simplicity that n is even, e < (1/16), and decompose
V(G) into disjoint parts U and V, I U = IV . Let A be a randomly chosen Len- -
element subset of U and set

Then

On the other hand,

V(A) = j v E V : Idis (v, A) I > 10 - '

	

-~
l

	

n

PrCldis (v,A)I > 10— fsel > 1 .
n

	

2

Hence, the expected size of V(A) equals

Pr [Idis (v, A) > 10-z v
_ I
En ]

4
< E[IV(A)I]

	

2
PrCIV (A)~ >

gl
+ 11 (1 - Pr[V(A)' >

g])
,



implying

EV(A) >
n

>
I

L

	

8] 3 .

Thus, one can choose a specific A and an [en]-element subset B C V(A)
such that dis (v. A) > 10 - `Vae/n, or dis (v, A) < - 10-- Vse/n, hold for all
v e B . In both cases, A and B meet the requirements of the theorem with
s = 10 -2 8 1'2 . 1

Corollary. For every a > 0 there exists a S > 0 with the property that any
graph G with n vertices and e > n edges contains an at most 2En-element sub-
set R C V(G) such that

Idis (R)I > Sam .

Proof. It is sufficient to note that

dis (A U B) = dis (A) + dis (B) + dis (A,B) .

Hence, if A and B satisfy the conditions in Theorem 5 . then the absolute
value of the discrepancy of at least one of the sets A, B, or A U B exceeds
s(

	

/3) . 1

Next we prove the Expansion-Retraction Theorem stated in the introduction .

Proof of Theorem 3 . Let IR I = m and suppose for convenience that n is
even . If to ? n/2, then let S be a randomly chosen n/2_-element subset of R .
The expected number of edges in G [S] is

(1/2)
2

E[e(S)] = e(R)	_ e(R)4

	

\m
,

(2)

implying

E[dis (S)] - dis
(R) (2m)

Thus there exists a specific S with Idis (S)I ? Idis (R) I/4 .
Now assume to < n/2 and denote k the complement of R . Let P be a ran-

domly chosen (n/2)-element subset of R and let Q be a random set consisting
of R and n/2-m randomly chosen vertices of R . Denote E, = E[e(P)] and
E2 = E[e(Q) 1 . We will establish an upper bound for min(E„E,) in the case of
D ? 0 and a lower bound for max(E„ Ez ) in the opposite case .
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Clearly,

z
E, - 4 e(R)

n

	

= F„
4

	

(n - m)z

m

	

nn2)	m) z
Ez = e(R) + e(R,R)(n12)

m
+ e(R)(((	m), = Fz .

Since e(R, R ) = e - e(R) - e(R), for fixed e and e(R), F, and Fz are linear
functions of x = e(R) . Therefore, min(max(F,, Fz)) as well as max(min(E„ E,))
is achieved if F, = Fz . Thus,

1

~C

n

	

1

	

n-2m

	

1 ~n-2m)
xo(		e(R) + 1 (e - e(R) - x,))

	

x~
4 n-m

	

2

	

n-m

	

4

	

n-rn

x. =e(R)+e
ti -2m

n

Substituting e(R) for e(m/n) z + D we get

1
Fi(xo) - E,(-ro) _ -e + -

1
D

	

n
4

	

4 ti -m

This implies that for some specific n/2-element subset S of the form P or Q,

dis (S)1 ?
\4

+ o(1)lD .

Moreover, the signs of dis (S) and dis (R) are identical . Note also that the ex-
treme value .' in Theorem 3 is only achieved if JR1/n is nearly 0 or l ; otherwise,
the constant can be improved . 1

Proof of Theorem I . To obtain S, apply Theorem 3 to the set R con-
structed in the corollary . Let T be a randomly chosen n/2-element subset of
V(G) . Then

E[e(S) - e(T)] = E[dis (S) - dis (T)] = dis (S),

yielding the result . 1

For the proof of Theorem 2 we need the following slightly generalized form
of the Expansion-Retraction Theorem :

Theorem 3' . Let G be a graph with n vertices, e and u positive numbers,
s < 1 - u, and assume that



idis (R), = D

for some subset R C V(G) having at most Fn elements . Then there exists a
subset S C V(G) with SI = vni such that

Idis (S )I ? (vmin(v, 1 - v) + o(I))D,

where the o (l) term goes to 0 as D tends to infinity .

Proof of Theorem 2 . Divide the vertex set of G into two disjoint equal
parts U and V such that e(G I U]) ? e/4 . Applying the corollary to the graph
G I U] with e = 1 - 2g, we obtain that there exists an at most ( I - 2µ)n-
element subset R of U with Idis (R)J > W(e/4) (n/2) . By Theorem 3', there is
S C U with IS I = L2µ ; n~ = Lgnj and
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r-
en

idis (S) J > (2gmin(2g . 1

	

2g) + o(1))S,
8

- D',

so we can choose another _grzj-element subset S' C U such that

le(S) - e(S')I ? D' .

Then, for any Ltnl-element subset T C V, either le(S) - e(T)I > ID' or
Ie(S') - e(T)I > ; D' . 1

3. SPARSE GRAPHS

In this section, we consider graphs with n vertices and cn edges, where c
The following form of Túran's theorem will be used :

Theorem 6 [7] . Every graph with n vertices and e edges contains an indepen-
dent set of size ? n`/(2e + n') .

Proof of Theorem 4 . If c

	

', then by Túran's theorem we can find in G
an independent set J of size ? n'- /( 2e -r n) ? n/2 . Obviously, dis (J) _
cn x (4 + o (l )) and thus d (n, () = n [(c/4) - o (l)] for 0 - c < ; .
To prove the second part of (*), we show that every graph with n vertices

and e edges ((n/2) s e <_ n) contains an independent set J of size ? (2n - e)/
3 . Indeed, this is true for n = 2 and, due to Túran's theorem, it follows for ev-
ery graph with n vertices and e = n edges . Let n > 2 and e < n . We may as-
sume without loss of generality that G has no isolated vertices . Then G must
have a vertex of degree 1 . Let w be such a vertex and let z be adjacent to w . We
delete z together with all edges incident to it . The remaining graph has an iso-



128 JOURNAL OF GRAPH THEORY

lated vertex w and a subgraph H with n - 2 vertices and <-e - 1 edges . By
induction, H contains an independent set Q of size ?[2(n - 2) - (e - 1)]/3 =
[(2n - e)/31 - 1 . Thus, the independent set J = Q U w contains ?(2n - e)/
3 vertices .

Having constructed J, we expand it to an (n/2)-element subset S by adding
one by one the necessary number of vertices in such a way that each addition
brings at most one new edge . Such an expansion certainly exists, since other-
wise we would find a subset T such that

(1) ~T 1 > n/2, and
(2) every x E T is adjacent to at least two vertices in V - T.

This would imply that IE! ? 2 1 TI > n, which is impossible . Thus, S D J in-
duces a subgraph with <-(n/2) - [(2n - e)/3] _ (2e - n)/6 edges . This
proves that both d -(G) and d - (n,c) are ?[(2 - c)/12]n o(n) . To see that
d - ( n, c) s [(2 - c)/ 121n + o(n), take the union of (I - c)n edges and
(2c - 1)/3 triangles (all are disjoint) .
Next we show (**) . If e <_ n/4, then, evidently, G has a subgraph with n/2-

vertices which contains all edges . This yields d '(n, c)

	

[(3(- )/4]n .
If e > n/4, then consider the connected components G„ G~	G, of G .

Let e(G;) = v(G;) - l + S,(i = 1, . . . , r) and let 8, ? 8, ? .

	

? 8,. If k
is the smallest i with S; = 0, then we assume that v(G,) - v(Gk+ ,)
v(G, ) . Let, also, H = U "', G, and

k+IS .

_

	

v(G;) .

Obviously, e(H) ? s - l . Therefore, if s* ? n/2, then

2-c
d '(G) ? 4 n + 0(n) .

In the case s * <_ n/2, we add to H some components G k _,, G k , 3 , . . . to get a
graph F, with n/2 vertices (it is possible that the last component will be only
partially included) . Clearly, e(F) ? e/2 and thus d+(n,c) ? c/4 . In addition,
e(F) ? n/4, otherwise

e(F) _

	

d,(x) < 4 - 1
,E

would imply that F contains at least two isolated vertices, therefore e(F) _
e ? n/4 .



So, if c ? ; then

d' (n, c)

To show that this bound is best possible, consider a graph with n vertices and e
edges, which consists of p = n - e - 1 disjoint paths of length ( -e/p~, and
another component, which is a path of length L = e - p Fe/p~ (in case e > 0) .

Finally, note that (***) follows from (*) and (**). 1

4. BIPARTITE DISCREPANCY

For any graph G with n vertices and e edges, let the bipartite discrepancy of G
be defined by

- c •

	

1

	

1
n+ o(n)

	

if 4 ms c <
4

	

2,

n + o(n)

	

if
Z

< c - 1 .
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bdis (G) = max~dis (S .T) 1 : S U T = V(G), ISI

	

T -
[21)

That is, bdis (G) is the maximum deviation of the number of edges running be-
tween two complementary halves of V(G) from

n-J 2 -

i .e ., from its expected value .

Conjecture 1 . For any 0 < e < <, there exists a S such that

bdis (G) ? 8n N2

holds for every graph G with n vertices and ; (") < e < 0 - s) (") edges .

Conjecture 1' . For any 0 < r < z, there exists a S such that, if G is any
graph with n vertices and

12
(")

< e < (I - s) (") edges, and w„ wz , . . . , w„ are
any weights assigned to the vertices of G, then one can always find an Ln/2j-
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element subset S C V(G) satisfying

le(S) - y,wi1 ? Sn 3~2 .
ics

Proposition . Conjecture V implies Conjecture 1 .

Proof. Assume, for simplicity, that n is a multiple of 6, and let T~ be an
arbitrary set of n/3 vertices of G . For any i E V(G) - To set

e(T,)
w; - I{t E To : (i, t) E E(G)}I - 3	

n

Applying Conjecture V to the subgraph of G induced by V(G) - T, we can
find an n/3-element subset S C V(G), disjoint from To , with

(2n)3a
:e(S) _

	

w; = le(SO) + e(T.) - e(5,,, TO )I > S 33
ics

Now split V(G) - S o - T„ arbitrarily into n/6 pairs v,,yj , and let S be a ran-
dom set that contains So and exactly one vertex from each pair. Further, let
T = V(G) - S. Then any edge of G with at least one endpoint not in So U T,
has probability precisely i of being in e(S,T), unless it is an edge of the form
(x ;,y,) . Thus

E[e(S) + e(T) - e(S, T)] = e(S,,) + e(TO , T) - 0 ,

where 0 < A <_ n/ 12 = o(n 3'2 ) . Hence, there exist S and T with Idis (S, T) _
Ie(S) + e(T) - e(S,T)I ? Sn 3'` . Note that, in the special case when
w; = e/(2n), the truth of Conjecture V follows from [5] or from the corollary
in section 2 . 1

Let co denote the maximal positive c such that a random graph with n ver-
tices and en edges has a partition of the vertex set into two subsets of sizes
Ln/2~ and rn/2j, respectively, for which the number of edges with endpoints in
different parts is o(n) . By [4], a random graph with n vertices and cn edges
consists of a "giant" component of size [I - x(c)/2c]n and small components
of sizes O(ln n), where x(c) is the solution satisfying 0 < x(c) < I of the equa-
tion x(c)e") = 2ce -2, . For c = In 2, the size of the "giant" component is
n/2, implying that c„ ? In 2 .

Conjecture 2 . c u = In 2 .

Conjecture 2 would proceed from the following :
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Conjecture 3 . For every e > 0, there is but o((1 + e)") partitions of the ver-
tex set of a random tree T into two subsets of sizes n/2_ and (n/2~, respec-
tively, for which the number of edges with endpoints in different parts is o(n) .
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