Cycles in graphs without proper subgraphs of minimum degree 3

P. Erdös*, R. Faudree, A. Gyárfás**, R. H. Schelp***

Memphis State University

1. Introduction.

Let $\mathrm{G}(\mathrm{n}, \mathrm{m})$ denote the set of graphs with n vertices and m edges. It is well-known that each $G \in G(n, 2 n-2)$ contains a subgraph of minimum degree 3 but there exists a $G \in G(n, 2 n-3)$ with no subgraphs of minimum degree 3 (see [1] p. xvii).

It was proved in [2] that each $G \epsilon G(n, 2 n-1)$ contains a proper subgraph of minimum degree 3 , but there exists $G \in G(n, 2 n-2)$ without this property. In fact, a stronger result was proved in [2], namely that $G \in G(n, 2 n-1)$ must contain a subgraph of minimum degree 3 with at most $n-c \sqrt{n}$ vertices for some $c>0$. It was conjectured in [2] that each $G \epsilon G(n, 2 n-1)$ contains a subgraph of minimum degree 3 with at most $c n$ vertices for some absolute constant $c<1$.

In this paper we study cycle lengths of graphs which have no proper subgraphs of minimum degree 3. For ease of reference, let $G^{*}(n, m)$ denote the set of graphs with n vertices, m edges and with the property that no proper subgraph has minimum degree 3. The results mentioned so far show that $G \in G^{*}(n, m)$ implies $m \leq 2 n-2$, and if $G \epsilon G^{*}(n, 2 n-2)$ then G has miminum degree 3 . Throughout the paper we investigate the cycle structure of graphs G, with $G \in G^{*}(n, 2 \pi-2)$. In fact we give the following conjecture.

Conjecture: If $G \in G^{*}(n, 2 n-2)$, then G contains all cycles of length at most k where k tends to infinity with n.

Our results are all related to this conjecture. We have several examples to demonstrate the role of $2 n-2$ in this conjecture. For example for each n there exists graphs $G, G \in G^{*}(n, 2 n-3)$, such that G has no triangle (Examples 1 and 2). It is also true that there are $G \in G^{*}(n, 2 n-3)$ such that G has no cycles of length 5 or more (Example 3). For every r , we construct a graph $G \in G^{*}(n, 2 n-c(r))$ such that G has no cycles of length less than or equal tor (Theorem 4). In fact, the minimum value of $c(r)$ is determined precisely for $r=3,4$.

On one hand, our conjecture says that the graphs in $G^{*}(n, 2 n-2)$ contain small cycles. We prove that these graphs contain C_{3}, C_{4} and C_{5} (Theorem 2.) On the other hand, our conjecture says that the graphs in $G^{*}(n, 2 n-2)$ contain long cycles. Our main result is that $G \in G^{*}(n, 2 n-2)$ contains a cycle of length at least $\lfloor\log n\rfloor$ (Theorem 5.). However,

[^0]graphs in $G^{*}(n, 2 n-2)$ does not always contain very long cycles (as large as $c \sqrt{n}$ for some $c>0$, Example 7).

2. Properties of Graphs without proper subgraphs of minimum degree 3.

In this section we give a lemma and a theorem which we shall use frequently in sections 3 and 4. We first introduce some terminology.

Consider an ordering $x_{1}, x_{2}, \ldots, x_{n}$ of the vertex set of a graph. An edge $x_{i} x_{j}, i>j$ of the graph is called a forward edge on x_{i} and a backward edge on x_{j}. The forward (backward) degree of x_{i} is the number of forward (backward) edges incident to x_{i}. We shall let $d^{+}\left(x_{i}\right), d^{-}\left(x_{i}\right)$ denote the forward and backward degree of x_{i}, respectively.

For any graph G we formally define an ordering of the vertices of G as follows: x_{1} is a vertex of minimum degree in G. If $x_{1}, x_{2}, \ldots, x_{t}$ are already defined and $t<|V(G)|$, then let x_{t+1} be a vertex of minimum degree in $G-\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$. If G has no proper subgraph of minimum degree 3 , then $d^{+}\left(x_{i}\right) \leqq 2$ for $2 \leqq i \leq|V(G)|$. Since we shall use this ordering often, we formulate this statement as lemma.

LEMMA 1. Let G have n vertices and contain no proper subgraph of minimum degree 3 . Then, the vertices of G can be ordered so that $d^{+}\left(x_{1}\right)$ is the minimum degree of G and $d^{+}\left(x_{i}\right) \leqq 2$ for $i \geqq 2$.

THEOREM 1. If $G \in G^{*}(n, 2 n-2)$, then the vertices of G can be ordered so that $d^{+}\left(x_{1}\right)=$ $3, d^{+}\left(x_{i}\right)=2$ for $2 \leqq i \leqq n-2$, and $d^{+}\left(x_{n-1}\right)=1$. Moreover $d^{-}\left(x_{i}\right) \geqq 1$ for $2 \leqq i \leqq n$.

Proof: In the ordering of the vertices described in Lemma 1 observe that

$$
2 n-2=|E(G)|=\sum_{i=1}^{n-1} d^{+}\left(x_{i}\right) \leqq d\left(x_{1}\right)+2(n-3)+1 \leq 2 n-2 .
$$

Since $d\left(x_{1}\right) \leqq 3$ (otherwise G has at least $2 n$ edges), $d^{+}\left(x_{i}\right) \leqq 2$ for $i=2,3, \ldots,(n-2)$ and $d^{+}\left(x_{n-1}\right) \leqq 1$, all the inequalities are equalities. Thus, $d^{+}\left(x_{1}\right)=3, d^{+}\left(x_{i}\right)=2$ for $2 \leqq i \leqq n-2$, and $d^{+}\left(x_{n-1}\right)=1$. Since $d\left(x_{i}\right) \geqq d\left(x_{1}\right)=3$ and $d^{+}\left(x_{i}\right) \leq 2$ for $1<i \leqq n, d^{-}\left(x_{i}\right) \geqq 1$ follows.

Corollary 1. If $G \epsilon G^{*}(n, 2 n-2)$ then G has minimum degree 3 .
3. Small Cycles in $G^{*}(n, 2 n-2)$.

THEOREM 2. If $G \in G^{*}(n, 2 n-2)$ then for $n \geqq 5, G$ contains a C_{3} and a C_{5}. If $G \in G^{*}(n, 2 n-3)$ and $n \geqq 6$, then G contains C_{4}.

Proof: For $G \epsilon G^{*}(n, 2 n-2)$ consider the ordering of vertices given in Theorem 1. Clearly,
x_{n-2}, x_{n-1} and x_{n} determine a C_{3}. Without loss of generality we may assume that x_{n-3} is adjacent to x_{n-1} and x_{n}.

Assume that i is the largest index such that x_{i} is adjacent to x_{j} for some $j, i<j<n-1$. There exists such an index since $i=1$ is a suitable choice. If x_{i} is adjacent to x_{n-1} or to x_{n}, say to x_{n}, then select any $k>i$ such that $k \neq j, k \neq n, k \neq n-1$. This gives the $C_{5}, x_{i} x_{n} x_{k} x_{n-1} x_{j} x_{i}$ in G.

If x_{i} is not adjacent to either x_{n-1} or to x_{n}, then (since $d^{+}\left(x_{i}\right)=2$) x_{i} is adjacent to some x_{k}, with $i<k, j \neq k, n \neq k, n-1 \neq k$. But then $x_{i} x_{k} x_{n-1} x_{n} x_{j} x_{i}$ is a C_{5} in G .

To see that $G \epsilon G^{*}(n, 2 n-3)$ contains a C_{4}, observe that Theorem 1 almost holds in that we can order the vertices of G as $x_{1}, x_{2}, \ldots, x_{n}$ so that at most one of the equalities $d^{+}\left(x_{i}\right)=2$ for $2 \leqq i \leqq n-2, d^{+}\left(x_{1}\right)=3$, and $d^{+}\left(x_{n-1}\right)=1$ fails to hold. Moreover if equality does not hold for some i then $d^{+}\left(x_{i}\right)$ is just one less than the value shown above. If each of the equalities $d^{+}\left(x_{n-1}\right)=1, d^{+}\left(x_{n-2}\right)=d^{+}\left(x_{n-3}\right)=2$ hold then the subgraph of G induced by $X=\left\{x_{n-3}, x_{n-2}, x_{n-1}, x_{n}\right\}$ has five edges and there is a C_{4} in G. Therefore, we assume that there is no C_{4} in the subgraph induced X. Also, by a suitable permutation of the vertices in X, we may assume that $x_{n-3} x_{n-2}, x_{n-3} x_{n-1}, x_{n-3} x_{n}$ and $x_{n-2} x_{n-1}$ are edges in X. But $d^{+}\left(x_{n-4}\right)=2$ and the only way to avoid a C_{4} in G is to assume x_{n-4} to be adjacent to x_{n-3} and to x_{n}. Since $n \geqq 6, x_{n-5}$ exists and $d^{+}\left(x_{n-5}\right) \geqq 2$. Thus, there exists a C_{4} in G containing x_{n-5} and three vertices of $\left\{x_{n}, x_{n-1}, x_{n-2}, x_{n-3}, x_{n-4}\right\}$.

With more work it is possible to show that $G \epsilon G^{*}(2 n-2)$ always contains C_{6} for $n \geqq 6$. The following constructions show that Theorem 2 is sharp.

EXAMPLE 1: Let $n \geqq 6$ be even. Consider the graph on n vertices defined as follows. Let $x_{1} x_{2} \ldots x_{n-2}$ be a cycle of length $n-2$. Let y and w be two new vertices with y adjacent to all x_{i} of even index and w adjacent to all x_{i} of odd index. Finally place an edge between y and w. The graph obtained contains no triangles, (in fact, is bipartite) has no proper subgraph of minimum degree 3 , and has $2 n-3$ edges.

EXAMPLE 2: Let $n=2 k+1 \geqq 9$ and consider a cycle of length k with vertices $x_{1} x_{2} \ldots x_{k}$. For $i=1,2, \ldots, k-1$ place new vertices y_{i} in the graph with each y_{i} adjacent to x_{i}. Finally, let v and w be two additional vertices of the graph such that each are adjacent to $y_{1}, y_{2}, \ldots, y_{k-1}$ and x_{k}. The resulting graph has $2 n-3$ edges, no triangle and no proper subgraph of minimum degree 3 .

EXAMPLE 3: Consider the graph obtained from $K_{2, n-2}$ by placing an edge between the two vertices of the two-vertex color class. This graph has no cycles of length 5 or more, has $2 n-3$ vertices, and contains no proper subgraph of minimum degree 3 .

EXAMPLE 4: Assume that $n-2$ is divisible by $4, n \geqq 10$, and consider a cycle of length $n-2$ with vertices $x_{1}, x_{2}, x_{3}, \ldots, x_{n-2}$. Let y and w be two new vertices. Join vertex y to
x_{i} for $i \equiv 1$ or $i \equiv 2(\bmod 4)$ and join w to x_{i} for $i \equiv 0$ or $i \equiv 3(\bmod 4)$. This graph has no C_{4}, has $2 n-4$ vertices, and has no proper subgraphs of minimum degree 3 . It is easy to modify this example for $n \equiv 0,1,3(\bmod 4)$.

Based on these examples, we conclude that Theorem 2 is sharp: there exists $G \in G^{*}(n, 2 n-3)$ without C_{3} (Example 1 and 2); there exists $G \in G^{*}(n, 2 n-3)$ without C_{5} (Example 1 and 3); there exist $G \epsilon G^{*}(n, 2 n-4)$ without C_{4} (Example 4).

Up to now we've only considered the existence of C_{k} (for $\left.\mathrm{k}=3,4,5\right)$ in $G \in G^{*}(n, 2 n-2)$. We continue by looking for the minimum m that $G \in G^{*}(n, m)$ contains a cycle of length less than r. Theorem 2 and Examples 1 and 2 show that $m=2 n-2$ when $r=4$. The upper bound for m in cases $r=5$ and $r=6$ are given in the next result.

THEOREM 3. Let $g(G)$ denote the girth of G. If $n \geqq 6$ and $G \epsilon G^{*}(n, 2 n-4)$, then $g(G) \leqq 4$. If $n \geqq 8$ and $G \in G^{*}(n, 2 n-6)$ then $g(G) \leqq 5$.

PROOF: Assume $G \in G^{*}(n, 2 n-4)$ and apply Lemma 1. Clearly $d^{+}\left(x_{1}\right) \leqq 3$, otherwise G has at least $2 n$ edges. If $n \geqq 6$ the subgraph H induced by $x_{n}, x_{n-1}, x_{n-2}, x_{n-3}, x_{n-4}$ in G has at least $(2 n-4)-3-2(n-6)=5$ edges. We may assume that H is a cycle of length 5 , otherwise H contains C_{3} or C_{4} and $g(G) \leqq 4$ follows. Therefore $d^{+}\left(x_{1}\right)=3, d^{+}\left(x_{i}\right)=2$ for $i=2,3, \ldots, n-5$. But x_{n-5} is adjacent to two vertices of the five-cycle H giving a C_{3} or C_{4}.

To prove the second part of the Theorem, assume $G \in G^{*}(n, 2 n-6)$ and apply Lemma 1 . Again, $d^{+}\left(x_{1}\right) \leqq 3$. Since $n \geqq 8$, we consider the subgraph H induced by $\left\{x_{n}, x_{n-1}, x_{n-2}\right.$, $\left.x_{n-3}, x_{n-4}, x_{n-5}, x_{n-6}\right\}$ in G. Thus, H contains at least $(2 n-6)-3-2(n-8)=7$ edges. Let C be a cycle of H with minimum length, so that C is a cycle without a diagonal. If $|C|=7$ then $H=C$ and $d^{+}\left(x_{1}\right)=3, d^{+}\left(x_{i}\right)=2$ for $i=2,3, \ldots, n-7$. In particular, x_{n-7} is adjacent to at least two verices of C giving a cycle of length at most 5 . If $|C|=6$, then without loss of generality assume $x_{n}, x_{n-1}, x_{n-2}, x_{n-3}, x_{n-4}, x_{n-5}, x_{n}$ is a 6 - cycle and x_{n-6} is adjacent to x_{n-5}. If x_{n-6} is adjacent to any vertex x_{i} for $n-4 \leqq i \leqq n$ then we have a C_{3}, C_{4} or C_{5}. Therefore, H has 7 edges and again $d^{+}\left(x_{1}\right)=3, d^{+}\left(x_{i}\right)=2$ for $2 \leq i \leqq n-7$. In particular $d^{+}\left(x_{n-7}\right)=2$, and it is easy to check that the only case when $x_{n-7}, x_{n-6}, \ldots, x_{n}$ does not induce a cycle of length at most 5 in G occurs if x_{n-7} is adjacent to x_{n-6} and x_{n-2} (see Figure 4). It is easy to see that $d^{+}\left(x_{n-8}\right)=2$ implies the existence of a cycle of length at most 5 . Thus $|C| \leqq 5$ completing proof of the theorem.

To show that the first part of Theorem 3 is best possible we give the following example.
EXAMPLE 5: Assume n is divisible by 5 and $n \geqq 10$. Let $x_{1} x_{3} x_{5} x_{2} x_{4} x_{1}$ be a five-cycle and $y_{1} y_{2} \ldots y_{n-5} y_{1}$ is a $n-5$ cycle, Vertex x_{i} is adjacent to y_{j} if and only if $j \equiv i(\bmod$ 5) (for all $i, 1 \leqq i \leqq 5$). This graph has $2 n-5$ edges, has no proper subgraph of minimum degree 3 and contains no C_{3} or C_{4}.

We do not know examples of $G \epsilon G^{*}(n, 2 n-7)$ with $g(G) \geqq 6$ for infinitely many n. However, it is possible to find $G \in G^{*}(n, 2 n-8)$ with $g(G)=6$ for infinitely many n.

The next theorem shows that graphs in $G^{*}(n, 2 n-c)$ do not always contain small cycles.

THEOREM 4. For every postive integer r there exists $c=c(r)$ and a graph $G \in G^{*}(n, 2 n-c(r))$ such that $g(G)>r$.

Proof: Let k be a natural number and let $C_{1}, C_{2}, \ldots, C_{k}$ be vertex disjoint cycles of length $t=2 \cdot 5^{r+1}-1$. We shall define the graph G_{k} by adding edges to the graph $C_{1} \cup C_{2} \cup \cdots \cup C_{k}$. Assume that the vertices of C_{i} are $x_{1}^{i}, x_{2}^{i}, \ldots, x_{t}^{i}$ (indexed in the natural order of the cycle). The definition of G_{k} is recursive. Set $G_{1}=C_{1}$. If $G_{1}, G_{2}, \ldots, G_{k-1}$ are already defined we shall define G_{k} by adding edges $x y$ to $G_{k-1} \cup C_{k}$ such that $x \epsilon C_{k}, y \epsilon C_{k-1}$. The definition will preserve the following properties (for each $i, 1 \leqq i \leqq k$):
(i) each cycle of G_{i} is longer than r
(ii) the maximum degree of G_{i} is at most 5 , and
(iii) $d_{G_{i}}\left(x_{1}^{i}\right)=4, d_{G_{i}}\left(x_{i}^{i}\right)=2, d_{G_{i}}\left(x_{j}^{i}\right)=3$ for $2 \leqq j \leqq t-1$ and $i \geqq 2$.

Note that properties (i), (ii) and (iii) trivally hold for $i=1$, since $G_{1}=C_{1}$.
To define G_{k} we add edges $e_{o}=x_{1}^{k} y_{o}, e_{1}=x_{1}^{k} y_{1}, e_{2}=x_{2}^{k} y_{2}, e_{3}=x_{3}^{k} y_{3}, \ldots, e_{t-1}=$ $x_{t-1}^{k} y_{t-1}$ to $G_{k-1} \cup C_{k}$, such that $y_{j} \in V\left(C_{k-1}\right)$ for $j=0,1, \ldots, t-1$ and G_{k} satisfies properties (i), (ii), and (iii) for $i=k$. Observe that (iii) holds independent of the choice of each y_{j}, so that we need only select each y_{j} such that (i) and (ii) hold. The edge e_{0} can be defined arbitrarily. Assume that $e_{0}, e_{1}, \ldots, e_{s}$ are defined for $0 \leqq s<t-1$ in such a way that properties (i) and (ii) hold for $G^{\prime}=G_{k-1} \cup C_{k} \cup\left\{e_{o}, e_{1}, \ldots, e_{s}\right\}$. We define e_{s+1} as follows. Let W denote the set of vertices in C_{k-1} which can be reached by a path of length at most r from x_{s+1}^{k} in the graph G^{\prime}. Since (ii) holds for $G^{\prime},|W|<5^{r+1}$ and therefore $\left|V\left(C_{k-1}\right)-W\right|>t-5^{r+1}=5^{r+1}-1$. Let T be a subset of $V\left(C_{k-1}\right)-W$ such that $|T|=5^{r+1}$. By definition, for any $y \in T$ the graph $G^{\prime} \cup e_{s+1}$ statisfies (i) with $e_{s+1}=x_{s+1}^{k} y$.

Using property (iii) for $i=k-1$

$$
\sum_{y \in T} d_{G_{k-1}}(y) \leqq 3|T|+1=3.5^{r+1}+1
$$

Since G^{\prime} is obtained from G_{k-1} by adding $s+1$ edges,

$$
\sum_{y \in T} d_{G^{\prime}}(y) \leqq \sum_{y \in T} d_{G_{k-1}}(y)+s+1 \leq 3 \cdot 5^{r+1}+1+t-1=5^{r+2}-1 .
$$

Thus there exists an $y_{s+1} \epsilon T$ with $d_{G}^{\prime}\left(y_{s+1}\right)<5$. Thus with $e_{s+1}=x_{s+1}^{k} y_{s+1}$, the graph
$G^{\prime \prime}=G^{\prime} \cup e_{s+1}$ satisfies properties (i), (ii) and (iii). Therefore G_{k} is defined.
It is clear that $\left|V\left(G_{k}\right)\right|=k t$ and $\left|E\left(G_{k}\right)\right|=2 k t-t$. The proof is completed by showing that G_{k} has no proper subgraph of minimum degree 3 . Assume to the contrary that G^{*} is such a proper subgraph. Since $d_{G_{k}}\left(x_{t}^{k}\right)=2, x_{t}^{k} \notin V\left(G^{*}\right)$. However, $d_{G_{k}-x_{t}^{k}}\left(x_{t-1}^{k}\right)=2$ implies $x_{t-1}^{k} \notin V\left(G^{*}\right)$. Repeating this argument we get that $x_{j}^{k} \notin V\left(G^{*}\right)$ for $1 \leqq j \leqq t$. But $d_{G_{k}}-C_{k}\left(x^{k-1}\right)=2$ and by observations just like those made above, none of the vertices of C_{k-1} belong to G^{*}. Continuing in this way we see that G^{*} is the empty graph, a contradiction. Hence $G_{k} \in G^{*}(t k, 2 t k-t)$ for all k with $t=2 \cdot 5^{r+1}-1$, showing that $c(r)=2 \cdot 5^{r+1}-1$ is a suitable choice.

4. Long cycles in $G^{*}(n, 2 n-2)$.

In this section we prove one of the main results of the paper, that is $G \in G^{*}(n, 2 n-2)$ contains a long cycle. Note that $G \epsilon G^{*}(n, 2 n-3)$ does not necessarily contain even a path of length 4 (see Example 3 in Section 2).

Theorem 5: If $G \epsilon G^{*}(n, 2 n-2)$, then G contains a cycle of length at least $\lfloor\log n\rfloor$.
Proof: Consider the ordering of G of Theorem 1. Since $d^{-}\left(x_{i}\right)>0$ for $i=2, \ldots, n$, we can find a spanning tree T recursively in G as follows. Place x_{1} in T. If $x_{1}, x_{2}, \ldots, x_{t}$ are in T and $t<n$, then choose any edge $x_{i} x_{t+1}$ of G such that $1 \leqq i \leqq t$. Redefine T by adding vertex x_{t+1} and the edge $x_{i} x_{t+1}$ to the old T. By definition of the tree, $d^{-}\left(x_{i}\right)=1$ in T for $2 \leqq i \leqq n$ and $d^{+}\left(x_{i}\right) \leqq 2$ in T for $2 \leqq i \leqq n$. Since $d^{+}\left(x_{1}\right)=3$ in G, T is a tree of maximum degree $\leqq 3$. Therefore, T contains a path P of length at least $\lfloor\log n\rfloor$ starting with x_{i}.

Let $x_{1}=x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ denote the vertices of P in the natural order defined by P i.e $x_{i_{j}} x_{i_{j+1}}$ is an edge of P for $1 \leqq j \leq k-1$. Notice that $i_{1}<i_{2}<\cdots<i_{k}$ follows from the definition of T since $d^{-}\left(x_{i}\right)<2$ in T for $2 \leqq i \leqq n$. We call a path $P=\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)$ in G a forward path if $i_{1}<i_{2}, \cdots<i_{k}$. Note that the definition depends on the order $x_{1}, x_{2}, \ldots x_{n}$ defined by Theorem 1. The discussion up to this point insures that G has a forward path of length at least [logn〕.

Let $P=\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)$ be a forward path of G with a maximum length. Since $d^{-}\left(x_{i}\right) \geqq 1$, and $d^{+}\left(x_{i}\right) \geqq 1$ in G for $2 \leqq i \leqq n-1$, it follows that $i_{1}=1, i_{k}=n$. Let t be any positive integer such that $1 \leqq t<k$ and $i_{t} \neq n-1$. Since $d^{+}\left(x_{i}\right) \geqq 2$ in G for $1 \leq i \leqq n-2$, we can find a forward path P_{t} in G starting at $x_{i_{i}}$ and ending at some vertex $x_{i_{i}}$ of P such that
(a) P_{t} and P are edge disjoint
(b) $V\left(P_{t}\right) \cap V(P)=\left\{x_{i_{t}}, x_{i_{t}}\right\}$

Note that (a) implies $t+1<t^{\prime}$. We claim for $t<s$ that the paths P_{t} and P_{s} are vertex disjoint if $t^{\prime}<s$ or if $s=t^{\prime}-1$. The case $t^{\prime}<s$ is obvious since both P_{t} and P_{s} are forward
paths. Assume $s=t^{\prime}-1$. But $t+1<t^{\prime}$ and $s+1<s^{\prime}$ implies that P_{t} and P_{s} do not have common endpoints. Assume that x is the last common vertex of P_{s} and P_{t} we find on P_{s} by traveling along P_{s} from its starting point $x_{i,}$. It is easy to see that the following edge sequence is a forward path: starting from $x_{i_{1}}=x_{1}$, travel along P to $x_{i,}$; continue on P_{s} to x; from x travel to $x_{i_{i}}=x_{i_{n+1}}$ along P_{t} : finally from $x_{i_{i}}$ to $x_{i_{k}}=x_{n}$ travel along P. This path is longer that P. This contradiction proves the claim.

Choose a subset $Q_{1}, Q_{2}, \ldots Q_{r}$ of the paths $P_{1}, P_{2}, \ldots, P_{t}$ as follows. Set $Q_{1}=P_{1}$. If $Q_{1}, Q_{2}, \ldots, Q_{s}$ are defined and the endpoint $x_{i,}$ of Q_{s} is not x_{n} then $Q_{s+1}=P_{s^{\prime}-1}$. If the endpoint $x_{i,}$ of Q_{s} is x_{n} then set $r=s$.

It is now easy to construct a cycle using all the vertices of $P \cup Q_{1} \cup \cdots \cup Q_{r}$. But P has at least $\lfloor\log n\rfloor$ vertices so that the cycle C has length at least $\lfloor\log n\rfloor$.

Finally, to see that $G \epsilon G^{*}(n, 2 n-2)$ does not contain necessarily a very long cycle, (larger that $c \sqrt{n}$) consider the following example.

EXAMPLE 6: Let k be an integer, $k \geqq 4$. Let C be a k-cycle with vertices $x_{1}, x_{2}, \ldots, x_{k}$. Select a new vertex w and connect w to each x_{i} with vertex-disjoint paths of length $k-1$. (The only common vertex of these paths is w). Select another new vertex y and let y be adjacent to all vertices except those of $\left\{x_{2}, x_{3}, \ldots, x_{k}\right\}$. Let G_{k} be the graph just defined.

The graph G_{k} has $k(k-1)+2=n$ vertices. Since $d(w)=k+1, d(y)=n-k, d\left(x_{1}\right)=4$ and all the other vertices are of degree $3, G_{k}$ has

$$
\frac{k+1+n-k+4+(n-3) 3}{2}=2 n-2
$$

edges. It is easy to check that G_{k} has no proper subgraph of minimum degree 3. It is also easy to see that the longest path of $G_{k}-y$ is smaller that $5 k$. Therefore the longest path of G_{k} is smaller that $10 k \leqq 10 \sqrt{n+1}$.

References

1. B. Bollobas, Extremal Graph Theory, AP 1978.

2. P. Erdös, R.F. Faudree, C.C. Rousseau, R.H. Schelp, Graphs With Proper Subgraphs Of Fized Minimum Degree, in preparation.

[^0]: *Hungarian Academy of Sciences
 ${ }^{* *} \mathrm{On}$ leave from Computer and Automation Institute, Hungarian Academy of Sciences
 ${ }^{* * *}$ Research partially supported under NSF grant no. DMS-8603717

