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Extremal Problems for Degree Sequences
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1 . Introduction

If positive integer weights are assigned to the edges of a graph G, then the degree
of a vertex is the sum of the weights of the edges that are incident to the vertex .
A graph G with weighted edges is said to be irregular if the degrees of the vertices
are distinct, and the irregularity strength of the graph G is the smallest 3 such that
the edges can be weighted with {1, 2, . . . , s} and be irregular . These notions are
defined in [1] .

No graph can have irregularity strength 1, since it is not possible for all of
the degrees to be distinct in a simple (no weights on the edges) graph . Several
measures can be used to determine how close a graph is to being irregular . For
example, the number of duplicated degrees, the sum of the duplicated degrees, or
even the location of the duplicated degrees in the degree sequence are possibilities .
Also, the number, sum, or location of distinct (or not duplicated) degrees could be
considered . We will consider various combinations of these measures and determine
(or give bounds) for their extremal values .
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2 . Notation

Let G be a graph of order n with degree sequence

(d l < d2 < . . . < d„) .

We will always assume that {v l , v2 i . . . , v„ } is the vertex set with degrees in
the increasing order just given unless explicitly stated otherwise . For any such
degree sequence the index set (1, 2, . . ., n} is partitioned into two sets D = D(G)
(duplicated degrees) and S = S(G) (single degrees) . Thus

D = {i : di = dj for some i # J),

and S is the remaining set of indices that are associated with degrees that appear
precisely once in the sequence . Each index in D is associated with some duplicated
degree, and if we choose the first index associated with each duplicated degree, we
obtain a proper subset D' = Y(G) of D . Also, related to the degree sequence is
the set M = M(G) (missing degrees), which is

M = {j : 0 < j < n - 1 and j # di for any i} .

Note that the set M is not a subset of the index set, but a collection of possible
values of degrees on the index set . From this point on we will identify with each
graph G the sets D, D', M and S (not identifying the graph G unless it is necessary
to avoid confusion) . Also, by ED, ED' and ES we will mean the sum of the
degrees indexed by each of the sets, and by EM the sum of the elements in M .

Let H,, denote the graph of order n with vertex set V (H,,) and edge set E(H„)
given by :

V(H„) _ {ul,v2i . . .,vn} and

E(H„) = {vi va : %'+ > n and i j4 j} .
This graph, called the half graph, has degree sequence

_ z

	

i < n/2,
d,

	

i-1 i>n/2,

and will be used to construct several examples of graphs that have extremal
degree sequences . Note that for the graph H,,, M = {0}, D' _ {[n/2]},
D = 1[n/2], [n/2] + i} with the one duplicated degree being [n/2], S =

2, . . ., n} - D, and ED = 2[n/2] .

For every graph G the set D is nonempty, since there are only n possible
degrees for vertices of a graph of order n, and it is not possible for 0 and n - 1 to
be simultaneously in a degree sequence . For the half graph H,,, D has precisely two
elements and M has 1 element . In each case these are clearly the minimal possible,
so some of the extremal problems are trivial . However, not all of the extremal
problems are so simple .
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One of the results that will be useful is a classical condition of Erdős and Gallai
which gives a characterization of graphical degree sequences .

Theorem 1 . [2] A sequence of positive integers dl < d2

	

do is graphical if
and only if , 1 di is even, and for each k(1 < k < n

k

	

n-k
dn-i+1 - k(k - 1) <

	

min{k,di },

The left hand side of the previous inequality is a lower bound on the number
of edges between the k vertices of highest degree and the remaining vertices of the
graph, and the right hand side is an upper bound on this number of edges . It is this
comparison on the count of the number of edges that will be used most frequently .
In fact, generally we will not use the statement of Theorem 1 explicitly, but we use
the argument that verifies the only if part of the Theorem .

Another well known useful result concerning graphical degree sequences is due
to Havel [4] and Hakimi [3] .

Theorem 2 . ([3],[4]) A sequence dl < d2

	

< do 0 is graphical if and only if
the (rearranged) sequence d l , d2, . . . . do-d n-1, dn_dn -1, . . . . dn_ 1 -1 is graphical .

3 . Location of duplicated degrees

In the half graph Hn the indices in D are in the middle of the degree sequence .
Is it possible in a degree sequence that all of the indices in D are small (or large),
and if so, how small (or large)? The following example indicates that in a graph of
order n all of the duplicated degrees can be in the first approximately terms of
the degree sequence .

Let m be a fixed positive integer, and n an integer satisfying

m2 -m+6<n<m2 +m+6,

where 6 = 0 for n even, and 6 = 1 for n odd. Let {V2, V3, . . . , Vn } be the vertices
of the half graph Hn_,, and add to this graph an isolated vertex vl to form the
graph Hn . Let A = { V1, V2 i . . ., V,n } . Form a new graph Ln from Hn by adding for
each i > (n + 1)/2 an edge between vi and a vertex in A in such a way that the
new degrees of the vertices in A differ by at most 1 (in fact are either m - 1 or m) .
This can be done, since if B is the sum of the degrees in Ln of the vertices in A,
then
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The graph L,ti has degree sequence

dt _ t m-1or m i<m
> m.

Therefore, all degrees are distinct except for the first m + 1 terms, and

(J4(n - 6) + 1 + 1)/2 < m + 1 < (V4(n - ő) +-1 + 3)/2 .

Thus, all indices of D are in the first approximately V;i terms of the degree
sequence. This example indicates that the following theorem is the best possible .

Theorem S . Let C be a graph of order n with degree sequence dl < d2 < . . . < d, .
If di C S for all i > k, then

k > (y/4(n - 6) + 1 + 1)/2,

where 6 = 0 for n even, and 6 = 1 for n odd .
Proof. First consider the case when n = 2p is even . We will assume that
D C_ (1,2, . . .'k), and show that k satisfies the inequality in the statement of
the theorem . Let A be the vertices associated with the first p terms in the degree
sequence of G, and B the remaining vertices . We will count the number of edges
between 4 and B using the proof technique of Theorem 1 to obtain the inequality
for k .

Let t = dp+ l < p . By assumption dp+i < dp+2 < . . . < d2pi so d F,+ i > t+i -1 .
Hence, for i > p - t, vp+i is adjacent to at least t - p + i vertices of A . This
implies that there are at least 1 + 2 + . . . + t = (~21) edges between B and A .

On the other hand, the degree sequence of the vertices in A are all distinct
except for possibly the first k terms, and the largest degree is at most t - 1. Thus
the sum of the degrees of the vertices in A is at most

(t-1)+(t-2) + . . . i-(t-p+k)+k(t-p+k-1)=p(2t - p-1)/2+(k),

which gives an upper bound on the number of edges between A and B . The
following inequality results :

Ck~
>

Ct 2 1 / - p(2t - p - 1)/2 .

Considering the right hand side of the above inequality as a function of t it is easy
to verify that its minimum integer value is p and occurs when t = p. Thus, we have
the inequality,

k 2 -k>2p=n,
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which is immediately the desired result for n even .

For n = 2p + 1 odd, the same argument used in the even case yields the
inequality k2 - k > 2p = n - 1 . This gives the desired inequality and completes the
proof of Theorem 3. ∎

Remark. The complement of the graph L n is one that has its D contained in the
last approximately terms of the degree sequence . Also, this is the best possible
by the argument just given .

4 . Sums of duplicated and missing degrees

Before stating any results in this section some specialized notation will be given and
families of graphs with special degree sequences will be described . For nonnegative
integers p < q < r and positive integer k, consider the sequence of n = r - p + k
numbers

(P,P+1, . . . . q- 1,q, q, . . .q,q+ 1,q+2, . . . . r)

with the term q occurring k times in the sequence. The family of graphs of order
n with this degree sequence will be denoted by M (p, q, r, k) . In particular, the half
graph Hn is in M (1, [n/2], n - 1, 2), and at the other extreme a q-regular graph is
in M(q, q, q, n)

There are families of graphs related to the half graph Hn that can be derived
from H,,. We will describe two such families that will be used to show the sharpness
of the bounds in the theorems that will follow . The first will be described here,
and the second later in this section .

For the first family, let k > 2 be a fixed integer and m be an integer divisible
by k- 1 . Consider the half graph HZ,n with vertices {V1, V2, . . ., V2 rn } . The vertex
v,,, is adjacent to the m vertices T = {Vm+1) Vm+2s . . . ) V2,,, } . A graph of order
n = 2m + k - 1 can be obtained from H2. by adding k - 1 independent vertices
{ul , u2, . . . , uk_I } such that each ui is adjacent to m/ (k - 1) vertices of T, each
vertex of T is adjacent to just one of the ui's, and the degrees of the remaining
vertices of HZ,,, are left unchanged . Since this graph has k vertices of degree
m/(k - 1) _ (n - k + 1)/(2k - 2), it is in M(1, (n - k + 1)/(2k - 2), n - k + 1, k),
so we will denote it by

H(1 , (n - k + 1)/(2k - 2), n - k + 1, k) .
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Clearly for this graph

ED' _ (n - k + 1)/(2k - 2) and

ED = k(n - k + 1)/(2k - 2) .

Note that if k = 2, then the half graph Hn is obtained and ED' _ (n - 1)/2 and
ED = n - 1. At the other extreme, if m = k - 1 (i .e . n = 3k - 3), then ED' = 1
and ED = k = (n + 3)/3 for the graph Hn(1, 1, 2n/3, (n + 3)/3) . This is, in fact,
the smallest possible value of ED, as the following result indicates .

Theorem 4 . If G is a graph of order n without isolated vertices, then ED' > 1
and ED > (n + 3)/3 . In addition, both bounds are sharp .

Proof. The graph Hn (1, 1, 2n/3, (n + 3) /3) just described verifies that each
inequality could not be improved . Also, clearly ED' > 1, since any degree sequence
must have a duplication .

For the second inequality consider the degree sequence dl < d2 < . . . < do of
G and assume that ED < (n +3) /3 . Select the largest index j such that dj < n/3 .
Such an index exists, in fact, with j < 2n/3 ; for if not, then there would be
j + 1 - n/3 > (n + 3)/3 duplicated degrees preceding dj . Also, j > n/3, for if
not, there would be duplicated degrees after dj which are greater than n/3 . Let
A = {Vl, V2 . . . . vj } and B = {Vj+1, Vj+2 i . . . , Vn } .

Select the integer t such that t < n/3, but t + 1 > n/3 . Observe that dj < t,
and also dj+l < dj+2 < . . . < dn, dj+l > t + i for i > 1, and vj+i is adjacent to at
least t - n + i + j + 1 vertices of A . In particular, Vn is adjacent to at least t + 1
vertices of A, and so there are at least 1 + 2 + . . . + (t + 1) edges from B and A.
However, the number of edges from A to B is no more than the sum of the degrees
of the vertices in A, and so is at most ED + 2 + 3 + . . . + t (which can be the case
when 1 is the only duplicated degree .) . Therefore, ED > t + 2 > (n + 3)/3. This
contradiction completes the proof of Theorem 4 . ∎

If a bound is placed on the number of duplicated degrees or the minimum de-
gree in the degree sequence, then more can be said about the sum of the duplicated
degrees . The following two theorems are examples of this type of result .

Theorem 5. Let k be a fixed positive integer. If G is a graph of sufficiently large
order n with no isolated vertices such that the number of duplicated degrees is k
(Le., I DI = k), then

ED' > (n - 2k + 2)/(2k - 2), and

ED > k(n - 2k + 2)/(2k - 2) .

Proof. For ease of calculation we will consider the case n = 2m. However, the
argument for the case n odd is the same, but the calculations are slightly more
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involved . We give an indirect argument and suppose that at least one of the
inequalities in the conclusion of the theorem fails to hold . Let A = {v l , v2 i . . . , V.),
B = {vm+1) vm+2, . . . , Ulna}, and t = d(vm+,) .

Since D has at most k indices, t > m- k+2. Thus, the fact that the conclusion
of the theorem is not true implies that each of the degrees d(v„,+ i) for 1 < i < m
are distinct for n sufficiently large . Hence, d(v,n+ i) > t+i -1 and vm+i is adjacent
to at least t + i - m vertices of A for each i > 1. Therefore, the number of edges
from B to A is at least 1 + 2 + . . . + t. On the other hand, the number of edges
from A to B is bounded above by the sum of the degrees of the vertices in A .
For each j E D', let rj be the number of times the degree dj is duplicated . Thus,
E rj = k . With this notation, we have the following inequality :
jED'

M
d(vi) < 1 + 2 + . . . + (t - 1) + L : (rj - 1) dj .

i-1

	

jED'

Comparing these estimates on the number of edges between A and B gives

1+2+ . . .+(t-1)+ Y: (rj-1)dj > 1+2+ . . .+t .
jED'

If r = max{rj : j E D'}, then (since r < k),

(r - 1)ED' >

	

(rj - 1)dj, and
jED'

ED' > t/(r - 1) > (n/2 - k + 2)/(r - 1) > (n - 2k + 2)/(2k - 2) .

Also, for n sufficiently large

ED = E rj dj > t + ED' > k(n - 2k + 2)/(2k - 2) .
jED'

The last two inequalities give contradictions which complete the proof of Theo-
rem 5. ∎

The bounds on ED and ED' given in Theorem 5 are close to the
best possible .

	

This is established by the graph previously denoted as
H(1, (n - k + 2)/(2k - 2), n - k + 1, k) .
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Theorem 6 . Let k > 1 be a fixed integer, and G be a graph of sufficiently large
order n and minimal degree k . Then,

ED' > k, and

ED > k(n + k2)/(2k + 1) .

Proof. The first inequality is trivial, since any graph must have duplicated degrees
and k is the minimal degree . One cannot improve on this, since ED' = k for a
k-regular graph .

Let G be a graph which does not satisfy the second inequality . Since G
has minimal degree k, the number, say t, of duplicated degrees is less than
(n+ k,2 )/(2k + 1) . Select the smallest integer r such that dr > n - r+ 1. Note that
such an r exists ; in particular, do > 1. For any j, dj > j + k - t, since the number
of duplicated degrees is t . Thus, if dj < n - j, it follows that j < (n + t - k)/2 .
This implies r < (n + t - k + 2)/2 .

Let A = {vl , v 2i . . . , vr_ 1 }, and let B the remaining vertices of G . For n
sufficiently large the degrees o£ the vertices in B are distinct, since the sum of just
two duplicated degrees as large as d(vr ) would exceed k(n + k2)/(2k + 1) . Hence,
if d(ur ) = p > n - r + 1, then d(vr+ i) > p + i - 1 and ur+ i is adjacent to at least
p + i - n + r > i + 1 vertices of A for each i > 1 . Thus, the number of edges from
B to A is at least 1 + 2 + . . . + (n - r + 1) . On the other hand, the number of edges
from A to B is bounded above by the sum of the degrees of the vertices in A, and
the only possible degrees are k, k + 1, . . . , (n - r) . Therefore, we have the following
inequality :

ED > (n - r + 1) + 1 + 2 + . . .+(k-1) .
A direct consequence of this and the bounds on r and t imply that
ED > k(n + k2)/(2k + 1), a contradiction which completes the proof of Theo-
rem 6 . a

We next describe the second family of graphs that can be derived from the half
graph Hn . One of these graphs confirms that the second inequality in Theorem 6
cannot be substantially improved. Other members of this family of graphs will
play the same role for the inequalities in Theorem 7 which follows .

Let k be a fixed even positive integer, and let {v l , V2,. . . , v n } be the vertices
of the half graph Hn . Assume n is divisible by 2(k - 1), and let m = n/2 and
t = (m/(k - 1)) + (k -- 2)/2 . Alter the graph Hn by deleting the m - t edges
between v,n and the vertices S = { v,n+1, Tern+2) . . . , v2rn-t }, and adding m - t
edges between S and T =- {v1,v2, . . .,vk-2} . This can be done such that each of
the vertices of T has degree t and the degrees of the vertices of S are unchanged,
since

m-t=(k-2)t-
(k2 1)

= (t - 1) + (t - 2) + . . . + (t - k + 2) .
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For t > k - 1 (which is certainly true for n large) this graph, which we will
denote by

H,, (k - 1, (n + (k - 1) (k - 2))/(2k - 2)), n - 1, k),

is in Nn (k - 1, (n + (k - 1) (k - 2))/(2k - 2)), n - 1, k) . Direct calculation gives
the following for this graph :

EM =
(
k 2 1) ,

ED = k(n + (k - 1)(k - 2))/(2k, - 2), and
ED' _ (n + (k - 1) (k - 2))/(2k - 2) = t .

Note that the graph H,,(k, (n+k(k-1))/2k), n-1, k+i) has minimum degree
k and ED = (k+ 1) (n+k(k - 1)) /2k . This indicates that the second inequality in
Theorem 6 is the correct order of magnitude .

For the graph Hn (k-1, (n+(k-1)(k-2))/(2k-2)), n-1, k), the minimums
of the functions ED + EM and ED' + EM, considered as functions of k, can be
easily calculated using elementary techniques . Their minimums and the value of
k that gives the minimum are the following (for the last function the values are
approximated) :

ED'(k) + EM (k)

ED(k) + EM(k)

(3(n/2)2/á-1)
2

(n + 3(n/2) 2/á )

2

These give upper bounds for the extremal numbers for each of the functions, and
the following theorem will show that they each give the correct value in order of
magnitude .

Theorem 7. If G is a graph of sufficiently large order n, then :

n2/á
ED' + EM >-

2
, and

n2/3
ED + EM >- n/2 + 2

k = (n/2) 1 /3 + 1

k = (n/2) 1/ 3 + 1

Proof. For ease of calculation we will consider the case when n = 2m is even .
The argument for n odd is same, although the arithmetic is more complicated . Let
{v 1 , v2, . . . , v.) be the vertices of G which give the degree sequence d, < d 2 < . . .
< dn , and let A = {v 1i v2 , . . ., v,n } and B be the remaining vertices of G . Assume
that at least one of the inequalities fails to be satisfied by the degree sequence of G .
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Clearly any duplicated degree from m, m + 1, . . . , n - 1 gives ED' > n/2 and
ED > n . Also, any missing degree from m, m + 1, . . . , n - 1 along with the sum
of duplicated degrees given by Theorem 6 implies each of the inequalities of the
Theorem . Thus, we assume that none of the degrees m, m + 1, . . . , n - 1 can
be missing or duplicated, so the degrees of the vertices in B are precisely these
numbers. This implies for each i > 1 that d(vm+1) = m + i - 1 and vm+ i is
adjacent to at least i vertices of A . Therefore, the number of edges from B to A is
at least 1 + 2 + . . . + m. On the other hand, the number of edges from A to B is
bounded above by the sum of the degrees of the vertices in A . Hence, we have the
following inequality (where S' = S n A) :

(1)

Inequalities (1) and (2) imply

(3)

ES'+ED> 1+2+ . . .+m.

No vertex in A has degree m = n/2, and therefore

ED > n/2 + ED' + EX

If there is a duplicated degree as large as n2 J
, an immediate contradiction is

reached. Therefore, each duplicated degrees is less than n23 , and so there are
more than nl/ 3 indices in D . Since the number of terms in M or D' is the same as
the number of indices in D, we have

s
(2)

	

ED' +EM > 1+2+ . . .+ (n1/31 >
n2J

2

ED > n/2 +
n2/s

2

The inequalities (2) and (3) give contradiction which complete the proof of
Theorem 7 . ∎
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