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For a positive integer n and graph B, fa (n) is the least integer m such that any graph of order
n and minimal degree m has a copy of B . It will be show that if B is a bipartite graph with parts
of order k and i (k--1), then there exists a positive constant c, such that for any tree T of
order n and for any j (0-- j _- (k - 1)), the Ramsey number

r(T, B) <n + c - (fe (n)) 't(k-1)

if A(T)--(n/(k-j -1))-(j+2) -fa(n). In particular, this implies r(T, B) is bounded above
by n + o(n) for any tree T (since fa (n) = o(n) when B is a bipartite graph), and by n + O(1) if
the tree T has no vertex of large degree . For special classes of bipartite graphs, such as even
cycles, sharper bounds will be proved along with examples demonstrating their sharpness .
Also, applications of this to the determination of Ramsey number for arbitrary graphs and
trees will be discussed .

1. Introduction

For graphs G and H, the Ramsey number r(G, H) is the least integer N such
that in any two-coloring (say with colors red and blue) of the edges of K n,, there
is either a copy of G in the red subgraph or a copy of H in the blue subgraph . We
investigate the Ramsey number r(T, B), where T denotes a tree on n vertices
and B is a bipartite graph .
Let B be a bipartite graph with parts of order k and 1 (k -- 1) . Thus B c Kk, t,

the complete bipartite graph . For any positive integer n, let fB (n) be the smallest
positive integer m such that any graph of order n and minimal degree m contains
a copy of B . The extremal degree number fu (n) is related to the extremal number
extB (n), which is the minimum number of edges in a graph of order n which
insures that there is a copy of B . In fact, ext,(n) ; n - fB(n)/2 with the two
expressions essentially the same for many graphs B . Therefore, fn(n)=o(n) for
any bipartite graph, in fact, fB (n) , c • n(k-1)/k for an appropriate constant c [13] .

The main result that will be proved is the following, which gives an upper
bound for the Ramsey number r(T, B).
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Theorem 1 . For a fixed bipartite graph B c Kk_ t (k --1) there exists a positive
constant c such that for any j (0 --j -- k - 1), and any tree T ,

r(T, B) , n + c • (fB(n)yt`k -tl

when A(T)--(n/(k -j- 1)) - (j + 2) • fB (n) .

For k = 2 or 3, the bounds given in Theorem 1 are of the right order of
magnitude, and cannot be improved . In [9] it is proved that if m = 4(T), then

r(T, C4) = max f 4, n + 1, r(K,,m, C4)} .

Also, r(K,,,,,, C4 ) , m + c' m ~, which is consistent with the degree extremal
number for C4 . This verifies the sharpness of Theorem 1 for k =1= 2. For k = 2
or 3 and 1 arbitrary, there are similar results in [9] indicating the sharpness of
Theorem 1 . For k . 4, little is known about the extremal numbers of Kk, t, so it is
difficult to measure how accurate the results of Theorem 1 are .

The two extreme cases of Theorem 1 (j = k - 1 and j = 0) give the following
two corollaries . When j = k -1, there is no restriction on the degree of vertices

in T. .

Corollary 2 . For a fixed bipartite graph B, there is a positive constant c such that
for all trees T„ of order n,

r(T, B) _ n + c • fB(n) .

The above corollary implies that for any tree T„ and bipartite graph B,
r(T,,, B) =n + o(n) . For special classes of trees, such as those with no vertices of
large degree, r(T,,, B) = n + O(1) . This follows from the next corollary .

Corollary 3. For a fixed bipartite graph B c Kk , t (k -- 1) there exists a positive
constant c such that for any tree T ,

r(T,B)--n+c,

when 4(T) , (n/(k - 1)) - 2 • fB(n) .

When B = C4, the constant c in Corollary 3 was shown to be 1 in [9] . It is
conjectured that in fact c = k - I will suffice in the general case . It is, of course,
impossible to find a better constant than this, since Kk_, .„_, contains no Kk, t and
its complement contains no connected graph of order n .
The techniques used to prove Theorem 1 can be used to obtain sharper bounds

for special classes of bipartite graphs such as even cycles . Corollary 2 implies that

r(T, Czk) -- n + c n'ik

since fB(n) -- a • n' tk for B = Czk [2] . The next result gives an improvement of this
bound when there are no vertices of extremely large degree .
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Theorem 4 . For any integer k % 2, there exists positive constants c and d such that

r(T, Cyk) = n + c

for any tree T„ of order n with 4(T) _- n - d - n

2. Notation and terminology

Notation will generally follow that used in [1] . However, some special
conventions will be used . We describe some of the special and most often used
terminology .
By a two-coloring of a complete graph K,,, we will always mean a coloring of

the edges of Kv using red (R) for the first color and blue (B) for the second color .
The red subgraph will be denoted by (R) and the blue subgraph by (B) .
By T, we will mean a tree of order m . A path in a graph G in which all of the

interior vertices have degree two in G is called a suspended path . An end-vertex is
a vertex of degree 1, and an end-edge is an edge incident to an end-vertex .
End-edges are independent if no pair of them is incident. A talon of degree m
consists of a vertex incident to m end-edges of the graph .

A bipartite graph B with parts of order k and I will be denoted by Bk t . Thus,
Bk j c Kk ,,. The minimum degree and maximum degree of vertices of a graph G
will be denoted by b(G) and A(G) respectively . The neighborhood of a vertex v
of G will be denoted by Nc (v), and the neighborhood of a set S of vertices
(which is the union of the neighborhoods of the vertices of S) will be denoted by
NG(S) . If H is a subgraph of G, then G - H is the graph obtained from G by
deleting the vertices of H and any incident edges .

3 . Proofs

Before proving Theorem 1 and Theorem 4, we will prove some lemmas that
will handle special cases, and state some known results that will be helpful . A
basis for the proof is that any large tree will have either a long suspended path,
many independent end-edges, or a large degree talon . The first lemma deals with
trees with long suspended paths, and the second lemma with trees with many
independent end-edges .

Lemma S . For 1, k and n positive integers, let T.- 1 be a tree with a suspended
path of l(k + 1) vertices and T the tree obtained from T.- 1 by subdividing one edge
on the suspended path. If a K„+k-1 is two-colored such that T„_ 1 c (R), then
either T c (R) or Bk .k c (B ) .

Proof. Let X = (x l , xz , . . . , xm ) for m =1(k + l) be the suspended path of T_ 1
in (R) and let Y be the k vertices of K„ + k_1 not in the T.- j .
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Assume that T„ ~ (R ) . Then no vertex of Y is adjacent in (R) to two
consecutive vertices of X. Also, if x,y, x;y E (R) for y E Y, then (assuming x; and
x; have successors along X) xi+ly, x;+1y and x i+1x; +1 E (B) . Therefore, if a
vertex of Y is adjacent to k+1 vertices of X in (R), then (B) ;;? Kk+I?41-
Thus, we can assume that each vertex of Y is adjacent in (R) to at most k + I - 1
vertices of X. This implies that at least I vertices ofX are adjacent to each vertex
of Y in (B), which completes the proof . (]

Lemma 6 . For n > m >-k and I positive integers, let T„ be a tree obtained from a
tree T _,,, by adding m independent end-edges . Then, r(T , Bk , 1)

max(r(T_m , Bk, ,) + k12, n + k - 1) .

Proof. Let r = max(r(T _,„, Bk , 1 ) + k1 2 , n + k - 1) and consider a two-coloring of
the graph G = Kr such that (B) ~ Bk ,,, and (R) ~ Tn . We will show that this
leads to a contradiction .

Successively select vertex disjoint subgraphs Hl , H2 , . . . , H, in (B) as follows :
H is disjoint from H,, . . . , H, _ 1 and contains a maximal number of vertices while
still being isomorphic to a subgraph of Kk ,, . Since (B) J Kk ,,, each vertex not in
H is adjacent in (R) to at least one vertex of H, . Let H be the union of these
subgraphs . Therefore each vertex of G-H is adjacent in (R) to at least one
vertex in each H, (1, i ,1) . By assumption there is an embedding T of T _,n into
(R) such that r(T„_,,,) is disjoint from H .
Let X be the m vertices of T _M incident to the m independent end-edges of T

not in T,-,, and let Y be the vertices of G not in T(T __) . Consider the bipartite
graph L with parts T(X) and Y induced by (R) . A matching in the graph L which
saturates r(X) would imply that (R) T , so assume no such matching exists .
Therefore, by Hall's theorem [12], there is a subset S of r(X) such that
INL(S)l < ISI . Since V(H) Y, each vertex of r(X) has degree at least 1 and
BSI >I. Therefore, the vertices of S are commonly adjacent in (B) to at least
IYJ - m + 1, k vertices of Y. This gives a Kk ,, in (B), a contradiction which
completes the proof . O

The following lemma is used to verify that a tree without long suspended paths
and many independent end-edges must have a large talon .

Lemma 7 [4] . If a tree T does not contain any suspended path with more than s
vertices, then the number of end-vertices of T„ is at least nl(2s) .

The next lemma is a technical result about the extremal degree number . It is
intuitively obvious and convenient for some calculations in the proof of
Theorem 1 .

Lemma 8. Let B = Bk,, and N = n + c • (f,(n)°) for a constant c > 0 and
0 < a _- 1 . Then, for large n, f,,(N) < 2 • fB(n) .
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Proof. Clearly, fB(N) _- fB (n) + c • (fB(n))". If a < 1, the result follows immedi-
ately . The same is true if B is a forest, for then fB (n) is bounded. Thus, we
assume that a= 1, and B contains an even cycle, so fB (n) is unbounded [13] .
Let G be a graph of order N with S(G)--2 • f,,(n), H a subgraph of order n,

and S = V (G - H) . We will assume that H ~ B, and show that this leads to a
contradiction . Since H ~ B, 8(H) < fB (n) and there is an h, c H which is adjacent
to at least fB (n) vertices of S . Assume that h,, . . . , hi have been shown, and let
H, = H- {h,, . . . , h i ) . Again, S(Hi ) <fB (n), so there exists an h i+ , e H, adjacent
to at least fR (n) - i vertices of S. For m = [f,(n)l and H'= {h,, . . . , h,,,), each
vertex of H' is adjacent to m vertices of S .
There are at least (k) k-subsets of S in the neighborhood of each of the m

vertices of H' . However, there are only (k) k-subsets of S. Thus, for m large,
some k-subset is in the neighborhood of at least m • (k)/(`k)--I vertices of H' .
This implies G iD B, a contradiction which completes the proof. 11

The major difficulty in proving both Theorem 1 and Theorem 4 is dealing with
the case of trees with large talons . The following is a greedy algorithm that will be
used in embedding such trees .

Algorithm . Our objective is to describe a procedure to assist in embedding a tree
T in (R) of a two-colored G = K„+ , in which (B) ~Kk ,,, and t = I. We will
assume that the tree T„ contains a talon with q edges and that 6((R)) ; n - q .

Let v be the center of the talon, and denote the tree obtained from T by
deleting the q edges of the talon by T q . Let w be a vertex of maximal degree in
(R), and S the vertices adjacent in (B) to w . Clearly T,-q can be embedded in
(R), since S((R))an-q, but our objective is to do this embedding in such a
way that the end-vertices of the talon can also be embedded . To achieve this, we
would like to use as many vertices of S as possible when we embed T„_ 9 .

Define the embedding r of T,-q as follows :
(1) Root the tree T,-q at v and set r(u) = w .
(2) For u e V(T _ q ), suppose that T(u) has been defined, and u,, uz , . . . , u„,

are the children of u . Select the images T(u,), . . . , T(um ) such that the
edges T(u)T(u,), . . . , T(u)T(u,,,) a (R), and such that a maximum number
of the vertices of (>;(u l ), . . . , r(um)) are in S. If all of these vertices are
not in S, label the vertex u "bad" and place it in the set D . The vertex v
will always be considered a "bad" vertex .

This defines an embedding T of T„_ q into (R), since S((R)),n -q . Let S' be
the vertices of S not in the image of r . Three situations can occur .

(a) If ~S'J -- t, then the embedding T can be extended to T , since there will be
at least q vertices adjacent to w in (R) which are not in T(T _ q ) .

(b) If ~S'J>t, and the number of "bad" vertices ID I,k, then (B) Kk,,,
since all edges between D and S' are in (B). This cannot occur .

(c) If JS'J > t, and the number of "bad" vertices ID I < k, then many edges of
T,-, will be incident to these "bad" vertices . In fact, each edge of T,-q is
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either embedded in S, or is incident to a "bad" vertex . Therefore, at least
(n - IS - S]) vertices of T _ q are adjacent to the "bad" vertices . When ~S1
is small in comparison to n, this will be used to generate vertices of large
degree in T. In fact, T,-, must contain a vertex of degree at least
(n - IS - S'J)/JDJ . This will give a contradiction under appropriate condi-
tions that will exist when the algorithm is applied .

Proof of Theorem 1 . The proof will be by induction on n, the order of the tree .
An appropriate choice of c insures that the result is true for small values of n .
Assume the theorem is true for all trees of order less than n, and that n is large .
Let M(j) =[c •(fB(n)y'lk-1>J and N=n+M(j), and assume that G=KN is
two-colored such that (R) T and (B) B . We will show that this leads to a
contradiction .

The remainder of the proof will be broken into three cases :
(1) T has a suspended path with at least l(k + 1) + 1 vertices
(2) T has k12 independent end-edges, or
(3) T has a talon with at least nl (2kl 3 (k + l)) edges .
These cases are exhaustive . If (1) does not occur, then T has a least

nl(21(k+1)) end-edges by Lemma 7 . If (2) does not occur, then all these
end-edges are involved in at most kl2 talons, which gives (3) .

Case (1) . T, has a suspended path with at least l(k + l) + 1 vertices

Let T._ 1 denote the tree obtained from T by decreasing the length of the
suspended path by 1 . By the induction assumption, (R) Q Tn _ 1 . An appropriate
choice of the constant c insures that Lemma 5 applies, which gives a contradiction
in this case .

Case (2) . T, has k1 2 independent end edges

Let m = k1 2, and let T _,„ be the tree obtained from T by deleting m
independent end-edges. Lemma 6 implies

r(T, B) , max{n - m + c . (fB(n - m)yl ( k-1) + k1 2 , n + k - 1}

n + c(fs(n)y(k-u

for appropriate choice of c . This contradiction completes the proof of this case .

Before considering Case (3), we will make some general observations about
(R) and the degree of vertices in this subgraph . Note that by the definition of

fB(n) . d((R))_N-fB(N) . By Lemma 8, fs(N)-2fB(n), so 4((R))-N -
2 • f,(n) . Also, the number of vertices of "small" degree in (R) is small .
Consider any number p (0 < p < 1), and let x be the number of vertices of (R ) of
degree less than (1-p)n . Each of these vertices has degree at least [pnJ in (B)



and at least ( k 1 ) subsets of cardinality k in its neighborhood . Since ( B ) B,

x ([kl)~(I-1)(k) .

This implies that x is bounded by a function that depends only on k, 1, and p, and
not on n . These x vertices can be deleted without significantly changing either the
number or degree of the remaining vertices (appropriately alter the constants c
and p). Thus throughout the remainder of the proof we will assume that
S((R))-(1-p)n . The appropriate choice for the value of p will depend on the
conditions in Case (3), which follows .

Case (3) . T„ has a talon with at least nl(2kl3 (k + 1)) edges .

Select p (0 <p < 1) such that pn is the maximal degree of a talon in T . Thus
certainly pn , nl (2kl 3 (k + 1)) . Let v be the center of this talon, and T, -q the tree
obtained from T by deleting the q edges of the talon, where q = pn . Also, let w
be a vertex of maximal degree in (R), and S the vertices adjacent to w in (B ) .
Since 4((R)) , N - 2 • f„(n), S has at most 2 • f„ (n) vertices. We apply the
algorithm described earlier (with t=M(j)) . Notation used in the description of
the algorithm will be used in the following discussion .

Three subcases j = k - 1, j = 0, and 1 --j < k - 1 will be considered .

j=k-1

If c-2, the algorithm yields an embedding, since ISI, and hence IS'I, is less
than t and (a) of the algorithm applies . This gives a contradiction .

j=0

In this case we can assume that neither (a) or (b) of the algorithm applies for
otherwise we would have a contradiction . Therefore, there are at most k - 1
"bad" vertices, and one of these vertices has degree at least (n - ~ SJ)l(k -1) by
(c), which contradicts the condition on d(T) for d - 2 .

1_j<k-1

Both (a) and (b) of the algorithm give a contradiction, so we assume (c)
applies . Therefore, the set of "bad" vertices D has at most k -1 vertices, the sum
of the degrees of these vertices is at least n-IS1, and S' has at least M(j)
vertices .

Consider the k - j of these vertices which have the largest degrees . The claim is
that each of these vertices must have degree at least ISI . If not, then the sum of
the degrees of the k -j -1 largest degree vertices would be at least n - ( j +
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1) ISI, and some vertex of T would have degree at least (n - Q + 2) I SI )l (k - j -
1), a contradiction for d --j + 2 .

Let {v, v 1 , v2 , . . . , Vi-k-1) be any set of k - j vertices of T,-q which includes v
and such that each has degree at least X51 . Let T' be the subtree of T,-q spanned
by these vertices . Since the length of suspended paths and the number of
independent end-edges is bounded by some function of k and l, the order of the
tree T' is also bounded by a function depending only upon k and l. For any
embedding i of T' into (R) which voids S and with r(v) = w, there is a k - j - 1
set Y= {r(v l ), r(v 2), . . . , r(v;_ k _,)} of vertices in V(G)-S .

If the union of the neighborhoods in (R ) of the k - j - 1 vertices Y contain all
of the vertices of S except for possibly M(j), then the embedding r can be
extended to T- q using all but possibly M(j) of the vertices of S. Thus clearly, r
can be extended to T., a contradiction . Thus, we assume that there are at least
M(j) vertices of S adjacent in (B) to each vertex of Y.

Since S((R)) % (1- p)n, there are many embeddings r of T' into (R) avoiding
S and with r(v) = w . In fact, the number of different k - j - 1 subsets Y yielded
by such embeddings is b . n k-' -1 for some positive constant b . Each vertex of
each of these subsets Y is adjacent in (B) to at least M(j) vertices of S .

Consider the bipartite graph L with the vertices in the first part being the
(k - j - 1)-subsets of V (G) - S, and the vertices in the second part being the
k-subsets of S. If all of the edges between the (k - j - 1)-subset and the k-subset
are in (B), then the corresponding vertices in L are adjacent . If some vertex in
the second part of L has degree at least (k I-J 1) + 1, then (B) 2Kk , t . Since this
cannot occur, we have the following inequality (the left hand side is a lower
bound on the number of edges emanating from the first part, and the right hand is
an upper bound on the number of edges emanating from the second part)

b .nk - -
1Mk1)I~L j 1 1*kl'

Using the fact that fB (n) _- On (k-l)1k for some constant c", this implies that

(c-k)k,/~
1-1

)2 k
k-j-1

If c is sufficiently large, this yields a final contradiction, which completes the proof
of this case and the theorem . 0

The same techniques used in the proof of Theorem 1 apply to special cases of
bipartite graphs, in particular for even cycles .

Proof of Theorem 4 . The initial observations, the nature of the induction, and
the proof of the first two cases are identical to the proof of Theorem 1 with C2k
considered as a Bk ,k bipartite graph (i .e . 1= k) . Therefore we will use precisely
the same notation used in Theorem 1 with 1= k, and assume we are at the point



of beginning Case (3) . Thus T has a talon with at least n/(4k 5 ) edges . Recall that
fB(n) < c' • n"' for B = C2k [2] .

Select p (0 < p < 1) such that pn is the maximal degree of a talon in T . Thus
certainly pn=n/(4ks ) . Let v be the center of this talon, and T„ _„, the tree
obtained from T by deleting the q edges of the talon, where q = pn. Also, let w
be a vertex of maximal degree in (R), and S the vertices adjacent to w in (B) .
Since A((R )) , N - 2 • fB(n), S has at most 2 -fn(n) vertices .

Let T' be the tree obtained from T„_ q by deleting all of the vertices of degree
1 . Since the length of suspended paths and the number of independent end-edges
is bounded by some function of k and 1, the order of the tree T' is also bounded
by a function depending only upon k and l . Hence, there is an embedding r of T'
into (R) with T(v) = w and r(T') disjoint from S . In fact, there is such an
embedding which avoids not only S but any c"n vertices not in S as long as, for
example, cn < (1 - p)n/2.

If the embedding i can be extended to T,-, using all of the vertices of S except
for possibly c, then it can clearly be extended to T„ . Thus, we assume that the
embedding cannot be so extended, so there is a vertex not in S which is adjacent
in (B) to at least c vertices of S . This can be repeated c"n times to obtain a set A
of c"n vertices, each of which is adjacent in (B) to at least c vertices of S.

Consider the bipartite subgraph L of (B) induced by the parts A and S . In L,
each vertex of A has degree at least c relative to S, c _- ISI _- c' . n'tk, and
JAI =c"n . Therefore by a result in [11], there is a path in L of length 2k-2 with
both end-vertices in S. This path with w, which is adjacent in (B) to each vertex
of S, generates a C2, This contradiction completes the proof of the theorem . O

4 . Problems and comments

Two critical graphical parameters in the determination of the Ramsey number
r(S, G), when S is a large order sparse graph (or in particular a tree), are the
order of S and the chromatic number x(G) of G . Also, the Ramsey number
r(S, B) where B is a bipartite graph induced by two color classes in a x(G)
coloring of the vertices of G, appears to be an important factor in determining
r(S, G) [6, 8]. This is one of the motivations for working on the problems
considered in this manuscript .

There are several places where the results presented could be improved ;
however, one is of particular interest . If T is a tree with only "small" degree
vertices, then

r(T, Bk,,) = n + c

for a sufficiently large c. It would be nice to show that c = k - 1 is sufficient in
general . For special classes of graphs this has been verified in [4] and [9] .

There are several papers dealing with the Ramsey number of a fixed graph and
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a sparse graph [3-5, 8] . It would be of interest to know which sparse graphs could
replace the trees of Theorem 1 and Theorem 5 without altering the results .
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