K-PATH IRREGULAR GRAPHS

Yousef Alavi, Alfred J. Boals, Gary Chartrand ${ }^{1}$, Ortrud R. Oellermann ${ }^{1}$
Western Michigan University, and Paul Erdös, Hungarian Academy of Sciences

Abstract

A connected graph G is k-path irregular, $k \geq 1$, if every two vertices of G that are connected by a path of length k have distinct degrees. This extends the concepts of highly irregular (or 2-path irregular) graphs and totally segregated (or 1-path irregular) graphs. Various sets S of positive integers are considered for which there exist k-path irregular graphs for every $k \in S$. It is shown for every graph G and every odd positive integer k that G can be embedded as an induced subgraph in a k-path irregular graph. Some open problems are also stated.

1. Introduction

In [1] a connected graph was defined to be highly irregular if each of its vertices is adjacent only to vertices with distinct degrees. Equivalently, a graph G is highly irregular if every two vertices of G connected by a path of length 2 have distinct degrees. In [4] Jackson and Entringer extended this concept by considering those graphs in which every two adjacent vertices have distinct degrees. They referred to these graphs as totally segregated. Jackson and Entringer [3] noted that these are the cases $k=2$ and $k=1$, respectively, of the property that the end-vertices of every path of length k have different degrees.

[^0]More generally, then, we define a connected graph G to be k-path irregular $k \geq 1$, if every two vertices of G that are connected by a path of length k have distinct degrees. Thus, the highly irregular graphs are precisely the 2 path irregular graphs, while the totally segregated graphs are the 1-path irregular graphs. In this paper we present some results concerning k-path irregular graphs and state some open problems.

For each positive integer k, there exists a k-path irregular graph. Of course, every graph of order at most k is k-path irregular. Indeed, any graph containing no path of length k is vacuously k-path irregular. Less trivially, the path of length $k+1$ is k-path irregular. Even this graph contains only two paths of length k, however. We now consider k-path irregular graphs with many paths of length k.

A connected graph G is homogeneously k - path irregular if G is k-path irregular and every vertex of G is an end-vertex of a path of length k. Figure 1 shows homogeneously k-path irregular trees for $k=3$ and $k=4$.

A homogeneously 3 -path irregular tree of order 11 .

A homogeneously 4-path irregular tree of order 14.

The trees shown in Figure 1 belong to a more general class of trees. In fact, for each integer $k \geq 1$, there exists a homogeneously k-path irregular tree. The paths P_{3} and P_{4} are homogeneously 1-path and 2-path irregular, respectively.
while Figure 2 describes the construction of a homogeneously k-path irregular tree of order $3 k+\lfloor(k+1) / 2\rfloor$ for $k \geq 3$.

Figure 2. A homogeneously k path irregular tree for

$$
k \geq 3
$$

2. Graphs That Are k-Path Irregular for Many Values of k.

We have already noted the existence of k-path irregular graphs for a given, fixed positive integer k. We now consider the existence of graphs that are k-path irregular for several values of k. First, we show that the values of k have some limitations in general.

Proposition 1. Only the trivial graph is k-path irregular for every positive integer k.

Proof: If G is a nontrivial (connected) graph, then it is well-known that G contains distinct vertices u and v having the same degree. If $d(u, v)=d$, then G is not d-path irregular.

We now investigate some proper subsets S of positive integers such that there exist graphs that are k-path irregular for every $k \in S$. In order to consider one natural choice of such a set S, we describe a class of graphs. For a positive integer n, define the graph H_{n} to be that bipartite graph with partite sets
$V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $V^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{n}^{\prime}\right\}$ such that $v_{k} v_{j}^{\prime} \in E\left(H_{n}\right)$ if and only if $i+j \geq n+1$ (see Figure 3).

Figure 3. The graph H_{n}
Proposition 2. Let G be a graph with maximum degree n. If G is k-path irregular for every positive even integer k, then $G \cong H_{n}$.

Proof: Let G be a graph that satisfies the hypothesis of the proposition, and suppose that $v_{n} \in V(G)$ such that $\operatorname{deg} v_{n}=n$. Since G is 2-path irregular, v_{n} is adjacent to vertices $u_{i}(1 \leq i \leq n)$, where $\operatorname{deg} u_{i}=i$. Similarly, u_{n} is adjacent to vertices $v_{j}(1 \leq j \leq n)$ with $\operatorname{deg} v_{j}=j$. Moreover, the vertices $u_{i}(1 \leq i \leq n)$ and $v_{j}(1 \leq j \leq n)$ are distinct. For $1 \leq i<j \leq n$, the vertices u_{i} and u_{j} are not adjacent; otherwise, G contains a $u_{i}-v_{i}$ path of length 4. Similarly, no two vertices of $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ are adjacent. Further $V(G)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ since G is 4-path irregular. Thus $G \cong H_{n}$.

The proof given of Proposition 2 only uses a portion of the hypothesis, namely that G is k-path irregular for $k=2$ and $k=4$. This suggests the following problem.

Problem 1. Determine those graphs that are k-path irregular for all even integers $k \geq 4$.

A bipartite graph G with partite sets U and V is k-path irregular for ail positive odd integers k, provided that $\operatorname{deg} u \neq \operatorname{deg} v$ for $u \in U$ and $v \in V$. Thus, $K_{m, n}(m \neq n)$ is k-path irregular for all positive odd integers k. On the other hand, a graph need not be bipartite to be k-path irregular for all positive odd integers k. For example, the graph of Figure 4 has this property but is not bipartite.

Although the graph of Figure 4 is not bipartite, it does contain a bipartite block. As we shall see, this is a necessary condition for a nontrivial graph to be k-path irregular for all positive odd integers k.

Figure 4. A non-bipartite graph that is k-path irregular for all positive odd integers k.

Proposition 3. Every nontrivial graph that is k-path irregular for all odd positive integers k contains a bipartite block.

Proof: Let G be a graph that is k-path irregular for all odd positive integers k and assume, to the contrary, that no block of G is bipartite. Then every block contains an odd cycle and, of course, has order at least 3. It then follows that every two vertices of each block of G are connected by both a path of even length and a path of odd length. Since G is k-path irregular for every odd positive
integer k, every two vertices of each block of G have distinct degrees in G.
Let B be an end-block of G (a block containing only one cut-vertex of $G)$, and let v be the cut- vertex of G belonging to B. As we observed above, the vertices of B have distinct degrees in G. Since $\operatorname{deg}_{B} u=\operatorname{deg}_{G} u$ for every vertex u of B different from v and since no nontrivial graph has all of its vertices with distinct degrees, it follows that only two vertices of B have the same degree in G, and v is one of these vertices. However, then, there is a vertex $u(\neq v)$ in B having degree 1 (see [2]), contradicting the fact that B is a block.

We now consider the existence of graphs that are k-path irregular for $k \in S$, where S consists of a pair of consecutive positive integers.

Proposition 4. There exists a graph containing paths of length $k+1$ that is both k - path irregular and $(k+1)$-path irregular if and only if $k \geq 3$.

Proof: If G is a 2-path irregular graph containing paths of length 2 with maximum degree $n \geq 2$, then G contains adjacent vertices u and v of degree n, where each of u and v is adjacent to a vertex of degree i, for each $i=1,2, \cdots n$. Further, these $2 n$ vertices are distinct. Since u and v are adjacent vertices of degree n, the graph G cannot be 1-path irregular. Since the two vertices of degree 1 that are adjacent to u and v, respectively, are connected by a path of length 3 , the graph G is not 3 -path irregular. Thus, there is no graph that is both k-path irregular and $(k+1)$-path irregular for $k=1$ or $k=2$. Such a graph does exist, however, for $k \geq 3$, as is illustrated in Figure 5.

Figure 5. A graph that is both k-path irregular and $(k+1)$-path irregular for $k \geq 3$.

A natural problem is stated below.
Problem 2. Determine those positive integers ℓ and m, with $\ell<m$, for which there exists a graph that is k-path irregular for every $k \in\{\ell, \ell+1, \cdots, m\}$.

3. Embedding Graphs in k-Path Irregular Graphs

It was proved in [1] that every graph can be embedded as an induced subgraph in a 2 -path irregular graph. We now show that this result can be extended to k path irregular graphs for all odd integers k. The basis for this result lies in the following proposition.

Proposition 5. Every r-regular graph of order n is an induced subgraph of a 3-path irregular graph of order $9 n+r-2$.

Proof: Let G be an r-regular graph of order n. The desired graph H has the vertex set

$$
V(H)=V(G) \cup T \cup U \cup V \cup W
$$

where

$$
\begin{aligned}
T & =\left\{t_{i} \mid 1 \leq i \leq n-1\right\} \\
U & =\left\{u_{i} \mid 1 \leq i \leq n+r-1\right\} \\
V & =\left\{v_{i} \mid 1 \leq i \leq 2 n\right\} \text { and } \\
W & =\left\{w_{i} \mid 1 \leq i \leq 4 n\right\} .
\end{aligned}
$$

If $V(G)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, then

$$
\begin{aligned}
E(H)= & E(G) \cup\left\{x_{i} t_{j} \mid 1 \leq i \leq n, 1 \leq j<i\right\} \cup \\
& \left\{t_{i} u_{j} \mid 1 \leq i \leq n-1,1 \leq j \leq n+r-1\right\} \cup \\
& \left\{u_{i} v_{j} \mid 1 \leq i \leq n+r-1,1 \leq j \leq 2 n\right\} \cup \\
& \left\{v_{i} w_{j} \mid 1 \leq i \leq n, 1 \leq j \leq 2 n\right\} \cup \\
& \left\{v_{i} w_{j} \mid n+1 \leq i \leq 2 n, 2 n+1 \leq j \leq 4 n\right\} .
\end{aligned}
$$

Note that in H,

$$
\langle T \cup U\rangle \cong K_{n-1, n+r-1} \text { and }\langle U \cup V\rangle \cong K_{n+r-1,2 n},
$$

while

$$
\left(\left\{v_{i} \mid 1 \leq i \leq n\right\} \cup\left\{w_{j} \mid 1 \leq j \leq 2 n\right\}\right\rangle \cong K_{n, 2 n}
$$

and

$$
\left\langle\left\{v_{i} \mid n+1 \leq i \leq 2 n\right\} \cup\left\{w_{j} \mid 2 n+1 \leq j \leq 4 n\right\}\right\rangle \cong K_{n, 2 n}
$$

The degrees of the vertices of U, V and W in H are $3 n-1,3 n+r-1$ and n, respectively. Since deg $x_{i}=r+i-1$ for $1 \leq i \leq n$ and
$\operatorname{deg} t_{j}=n+r+j-1$ for $1 \leq j \leq n-1$, it follows that H is 3-path irregular.

The graph H constructed in the proof of Proposition 5 is also 1-path irregular. Further, by adding additional copies of the graph $K_{2 n, 2 n}$ between V and W in the graph H, we may modify this proof to produce a k-path irregular graph for each odd integer $k \geq 3$.

Corollary 1. Let k be an odd positive integer. Every r-regular graph of order n is an induced subgraph of a k-path irregular graph.

In 1936 König [4] proved that every graph G is an induced subgraph of a regular graph H whose degree of regularity is the maximum degree of G. In 1963 Erdös and Kelly [2] determined the minimum order of such a graph H.

These facts give us the following result.
Corollary 2. Every graph of order n is an induced subgraph of an k-path irregular graph of order $O(n)$ for each odd positive integer n.

We conclude by presenting a problem.

Problem 3. Determine all even integers $k \geq 2$ such that every graph is an induced subgraph of a k-path irregular graph.

References

[1] Y. Alavi, G. Chartrand, F.R.K. Chung, P. Erdös, R.L. Graham and O.R. Oellermann, Highly irregular graphs. J. Graph Theory 11 (1987) 235-249.
[2] M. Behzad and G. Chartrand, No graph is perfect. Amer. Math. Monthly 74 (1967) 962-963.
[3] P. Erdös and P.J. Kelly, The minimal regular graph containing a given graph. Amer. Math. Monthly 70 (1963) 1074-1075.
[4] D.E. Jackson and R. Entringer, Totally segregated graphs. Congress. Numer. 55 (1986) 159-165.
[5] D. König, Theorie der endlichen und unendlichen Graphen. Leipzig (1936). Reprinted Chelsea, New York (1950).

[^0]: ${ }^{1}$ Research supported in part by Office of Naval Research Contract
 N00014-88-K-0018.

