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Let h >- 2 . The set A of integers is an asymptotic basis of order h if every
sufficiently large integer can be represented as the sum of h elements of A . If
A is an asymptotic basis of order h such that no proper subset of A is an
asymptotic basis of order h, then the asymptotic basis A is minimal. It follows
that if A is minimal, then for every element a E A there must be infinitely
many positive integers n, each of whose representations as a sum of h
elements of A includes the number a as a summand. Stöhr [6] introduced the
concept of minimal asymptotic basis, and Hdrtter [2] proved that minimal
asymptotic bases of order h exist for all h >- 2 . Erdős and Nathanson [1] have
reviewed recent progress in the study of minimal asymptotic bases .

For any set A of integers, the counting function of A, denoted A(x), is
defined by A(x) = card(( a E A I1 < a < x }) . If A is an asymptotic basis of
order h, then A(x) > cIx Il h for some constant c J > 0 and all x sufficiently
large . For every h >_ 2, Nathanson [3], [4] has constructed minimal asymptotic
bases that are "thin" in the sense that A(x) < czx'1h for some c 2 > 0 and all
x sufficiently large .

Let A be a set of integers. The lower asymptotic density of A, denoted
dL(A), is defined by dJA) = liminfx - c A(x)/x . If a = lim a - .A(x)/x
exists, then a is called the asymptotic density of A, and denoted d(A) .
Nathanson and Sárközy [5] proved that if A is a minimal asymptotic basis of
order h, then dL(A) < 1/h . In this paper we construct for each h >- 2 a class
of minimal asymptotic bases A of order h with d(A) = 1/h . This result is
best possible in the sense that it gives the "fattest" examples of minimal
asymptotic bases. We also prove that for every a E (0,1/(2h - 2)) there exists
a minimal asymptotic basis A of order h with d(A) = a .
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DEFINITIONS . Let N denote the set of nonnegative integers . Let A be a
subset of N. The h -fold sumset hA is the set of all integers of the form
a l + a 2 + • • • +a,,, where a i E A for i = 1,2, . . ., h . Let

Let vJ = max( uJ , v, ) . If u j < vj , then

u 1 + • • • + uj <_j . u j _<k . uj <vj <v1 +- • • +vi ,

which is absurd. Therefore, u j = vj , and so

u1 + . . . + u á_ 1 = v 1 + . . . + vá _ 1 .

It follows that u; = v ; for i = l, . . . , j. In particular, B is a Bksequence. This
proves (0.1) .
Note thatbj >k •bj I >k2 •bj 2 > • • • > kJ -1 •b 1 =c •kJ,where c=

b 1/k . Let x >_ c • k . Choose j such that c - k J < x < c • 0". Then
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n=a,+ • • • +ah =a,+ • • • +ah

be two representations of n as a sum of h elements of A . These representa-
tions are disjoint if a i

	

a j for all i, j = 1, . . . , h .
The set B of nonnegative integers is a Bksequence if it satisfies the

following property : If u t , v i E B for i = 1, . . . , k with u, < . . . < uk and
1)1< • • • < v k , and if U1+ • • • + u k = v 1 + • • • +vk , then u Í = v ; for i =
l ' . . . , k . If B is a Bksequence, then B is also a Bj -sequence for every j < k .

Let S1 = card(S) denote the cardinatity of the set S . Let {x) denote the
fractional part of the real number x .

LEMMA. Let k >_ 2, and let B = (bi )'i_ 1 satisfy b, > 0 and bi+1 > k • b ;
for all i >_ 1. Then :

(0 .1) B is a Bksequence .
(0 .2) B(x) = O(log x) .
(0 .3) If S E (0,1) and k - ` 5 S, then B(x) < B(Sx) + t for all x >_ 0 . In

particular, B(x) < B(x/k) + 1 .

Proof. Let u i , v ; E B for i = I__ , , where j < k, u l <
V 1 < . . . < vj. Suppose that

u 1 + • • • + u1 =v,+ • • • +vi -

B(x) < j < log(x/c)/log k < c'log x

< u j, and

for some c' > 0 and x sufficiently large . Thus, B(x) = O(log x) . This proves
(0.2) .
Ifx/k<bl , then x<k •b,< b2 , and B(x)<1=B(x/k) +1. If x/k>_
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b l , choose i >_ 2 such that bi_, < x/k < bi . Then x < k • b i < bi, 1 and so

B(x) < i = B(x/k) + 1 .

Let 1/k` < S . Then

B(x) < B(x/k) + 1 < B(x/k 2 ) + 2

	

B(x/k i ) + t < B(8x) + t .

This proves (0.3) .

THEOREM 1 . Let h >- 2. Let A be an asymptotic basis of order h of the form
A = B U C, where B and C are disjoint sets of nonnegative integers. Let r(n)
denote the cardinality of the largest set ofpairwise disjoint representations of n in
the form

n=b1+b2+ • • • +bh_1+c,

where c E C, b', . . ., bh _ 1 E B, and b1 < b2 < • • • < bh _ 1 . Let W be the set
of all integers w E hA such that if w = a l + • • • +a h with a i E A for i =
1, . . . , h, then aj = c E C for at most one j. Let

9(n) _ {c E Cin - c c (h - 1)B) .

(1)

Suppose that for some S E (0,1) the following conditions are satisfied :
(1 .1) B = {bi )°°_ 1 , where b1+1 > (2h - 2)b i for i >_ 1 .
(1 .2) r(n) - oo as n - oo .
(1 .3) For every c E C there exist infinitely many choices of bi	bh 1 (=- B

such that w =b,' +b2 + +bh , + c E W \ B and c' > Sw for all c ' E -=
Q(w) \ {c) .

(1 .4) For every bi E B, at least one of the following holds : (1 .4a) there exist
infinitely many choices of b2	bh _ 1 E B and c c C such that w = bí + b2
+

	

+b' _1 + c E W\ hB and c' > Sw for all c' E S2(w) \ {c) ; (1 .4b) there
exist infinitely many choices of b2	bh E B such that w = b' + b2 +

	

+ bh
E W and c' > Sw for all c' E Q(w) .

Then there exists C' C -_ C such that A' = B U C' is a minimal asymptotic basis
of order h and (C \ C')(x) < 2B(x)h-1 for x >_ w l . In particular, d(C \ C')
= 0 and dJA') = dJA) .

Proof. We shall construct the minimal asymptotic basis A' by induction .
Choose t such that (2h - 2) - ` < S . Choose Nl such that

(B(n) + t) h-1 < (3/2)B(n)h-1

	

(2)

and r(n) >_ 2 for all n >- N1 . Let Ao = A and Co = C. Choose c E Co . Let
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a l = c. By condition (1 .3), we can choose bI . . . , bh 1 E B such that

w1 =b1+b2' +

	

+ bh_ 1 +cEW\hB,

	

(3)

and w, >- N, and c' > 8w, for all c' E 0(wl) \ (c) . Let F, = 9(w 1 ) \ ( c) .
Let C, = C \ F, and let A, = B U Cl . Then

C\ C, = F, c (8w 1 ,

If c' E F1 , then there exist integers u ; E B for i = 1, . . . , h - 1 such that
w, = ul + • • • +vh 1 + c' . Since ví < w 1 , it follows that there are at most
B(w,) choices for each v i , and so

for x >- w1 . Since w, E W \ hB, it follows that, except for permutations of the
summands, (3) is the unique representation of w, as a sum of h elements
of A, .

Let n >- N, and n wl . Since r(n) >- 2 for n >- N1 , it follows that n has at
least two disjoint representations of the form (1) of hA . That is, there exist
integers u ; and u ;' E B for i = 1, . . . , h - 1, and c', c" E C such that

and

where c'

	

c" and u; 0 uJ ' for all i, j = 1, . . . , h - 1 .
Either c' E C, or c" E C1 . If not, then

c' (=- Q(w 1 ) \ {c) and c" E Q(w1) \ {c),

and so there exist integers v, and ul' E B for i = 1, . . . , h - 1 such that

w1=Ui+ . . . +uh-1 +C'

and

wi l .

(C\C,)(x) = IF1 I < B(w1 ) h-1

n=uí+ • • • +uh-1+c'

n=uí'+ • • • +uh 1 +c" ,

W1 = vi + • • - + uh 1 + c" .

(4)

(5)

(6)

(7)

(8)

(9)

Subtracting (8) from (6) and (9) from (7), we get two representations of
n - w 1 , and these yield the relation

u 1" +

	

+uh' - 1 + V1' +

	

+ Vh- 1 = u 1" +

	

+ u h" 1 + u 1' +

	

+U'-

	

h-1 •
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By Lemma 1, the growth condition (1 .1) on the elements of B implies that B
is a B2h_ z 'sequence; hence

{ 11 1 , . . . , uh-1 , v i,, . . . . Uh-1

	

-

	

11 1 , . . . , uh-1 U 1 , . . . , Uh-1 .

Since the representations (6) and (7) are disjoint, it follows that u ; uJ ' for
all i,j=1, . . .,h-1, and so

ul	uh-1 C

	

U1, . . . . Uh-1

Since ui < . . . < uh_ 1 , it follows that

111, . . ., uh-1

	

=

	

U1, . . ., Uh-1

Equations (6) and (8) imply that n = w l , which is false. It follows that either
c'0F1 =Q(wl)\{c} or c"(4Fl =0(wl)\{c}, and so

nGh(BUCJ=hA 1 for all n _ N1 .

Let k >_ 2. Suppose that for each j < k we have constructed
(1.5) an integer wj E W with wá_1 < 8wá for 2 < j < k,
(L6) a finite set Fj c C n (Swj, wj ] with JFj J < B(Woh-1
(1.7) a set Cj = C \ (F1 U . . . U Fj ) and an integer aj E Aj = B U Cj

such that wi has a unique representation as a sum of h elements of A j , and aj
is a summand that is used in this representation, and n E hAj for all n >_ N1 .

To perform the induction, we choose Nk so large that

(1.8) Nk > Wk- 1 ,
(1 .9) B(Nk )h-1 > 4B(Wk- 1 ) h-1 and
(1 .10) r(n) >- 2 + Y-~=11FJ - 2 + JA \Ak- 1 1 for n >- Nk .

Let ak E A k - 1 = B U Ck- 1 . There are two cases .

Case 1 . Suppose a k = c E Ck _ 1 . By condition (1.3) of the theorem, there
exist integers bi E B for i = 1, 2, . . . , h - 1 such that

b'+b'+

	

+bh_ 1 +c=wk EW\hB,

where 8Wk > Nk and c' > 8wk for all c' E Fk = 9(w k ) \ { c} . Let

Ck = Ck_1 \ Fk and Ak = B U Ck .

Then the element Wk has a unique representation (up to permutations of the
summands) as a sum of h elements of A k , and the integer ak = c is one of the
summands in this representation .
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Case 2. Suppose ak = bi E B . If condition (1 .4a) is satisfied, there exist
integers b; E B for i = 2,3, . . ., h - 1 and c E C such that

and

and

bi+b'+ ••• +b1i-1+c=W,E W\hB,

where Swk > Nk and C' > Swk for all c' E Fk = 2(wk) \ t 4 If condition
(1 .4b) is satisfied, there exist integers b' E B for i = 2, 3, . . . , h such that

bi+b'+ . . .+bh=WkEW,

where Swk > Nk and C' > Swk for all c' E Fk = Q(wk) . With either condition
(1 .4a) or (1 .4b), let Ck = Ck-1 \ Fk and Ak = B U Ck . Then the element wk
has a unique representation (up to permutations of the summands) as a sum of
h elements of Ak, and this representation includes the integer ak = bí .

In both cases, Fk c Ck-1 n (Swk, Wk] and JFkJ < B(wk)h-1 Let n >- NT .
We shall show that n E hAk . Since n E hAk_, and c' > Swk > Nk > wk _1 for
all c' E Fk = Ak I \ Ak, it follows that n E hAk for N1 < n < Swk . Let
n > Swk and n * wk. Since r(n) >- 2 + JA \Ak-11 for n >- Nk by condition
(1 .10), it follows that n has at least two disjoint representations of the form (1)
in hAk-1. That is, there exist integers u ; and uí' E B for i = 1, . . . , h - 1,
and c', c" E Ck-1 such that

n = uí + ••• + uh'-1 + c'

	

(10)

n=ui'+ ••• +uh 1+c",

	

(11)

where c' * c" and u ; * uj' for all i, j = 1, . . . , h - l . If c' E Fk and c" E Fk,
then there exist integers ví and ví' E B for i = l, . . . , h - 1 such that

Wk = ví + . . . + vh-1 + c'

	

(12)

Wk = vi +

	

+vh 1 + c" .

	

(13)

Subtracting (12) from (10) and (13) from (11), we get two representations of
n - wk, and these yield the relation

Uí +

	

+ u' + v" +

	

+v " = u" +

	

+U1, + v' +

	

+v'1

	

h-1

	

1

	

h-1

	

1

	

h-1

	

1

	

-1 •

Since B is a B2h-z-sequence, the argument used at the beginning of this proof
shows that n E h(B U Ck) = hAk . Thus, n E hAk for all n >- N1 . This com-
pletes the induction.
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We now define

0c

	

00

c= nCk =C\ UFk and A'=BUC' .
k=1

	

k=1

Let n >_ N1 . Choose wk > n . Then n E hAk . Since

00
a'>wk >n for all a' E Ak \A' = U F,

j=k+1

it follows that n E hA' . Thus, A' is an asymptotic basis of order h .
Here is the critical idea in the proof : At the k-th step of the induction, we

could choose any element ak E Ak = B U Ck . We must make these choices in
such a way that if a' E A', then a' = ak for infinitely many k . This implies
that for every a' E A' there are infinitely many integers w k such that w k E hA',
but W k h(A' \ { a'}), and so A' is a minimal asymptotic basis of order h .

Finally, we must prove that for x >_ w l ,

(C\C')(x) < 2B(x) h-1

By (S), (C\ C')(wl ) < B(w1)h-1 Suppose that (14) holds for w 1 < x < Wk-1.
Since (C\ C') n (wk_ 1 , Swk = 0, then (14) holds for x < Swk . Let Swk < x
< wk . Then by (1.6), (0 .3), (1 .9), and (2) we have

< 2B(x) h-1

Thus, (14) holds for all x >_ w1 . Since the set B is a B(2h_2)-sequence, it
follows from the lemma that B(x) = O(log x), and so d(C\ C') = 0 and
dL(A') = dJA) . This completes the proof .

We shall now use Theorem 1 to construct examples of minimal asymptotic
bases of order h with prescribed positive densities .

(C\ 0(x) < ( C\ 0(Wk) = ( C\ 0( Wk-1) + 1Fk1
•

	

2B(Wk_1)h 1 + B(Wk)h 1

•

	

2B(Wk-1) h 1 + (B(SWk) + t )h 1

•

	

ZB(SWk ) h-1 + ZB(SWk ) h-1

= 2B(SWk)h
1
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THEOREM 2 . Let h >- 2. Let B = { b i )°°_ I be a set of positive integers such
that

Let C = { c >_ 01 c =- 0 (mod h)) \ B o . Then there exists a set C' C C such that
A' = B U C' is a minimal asymptotic basis of order h, and d(A') = 1/h .

Proof. The set A = B U C is an asymptotic basis of order h, and d(A) _
1/h . We shall show that conditions (1.1)-(1 .4) of Theorem 1 are satisfied with
S = 1/(h + 1) . Note that condition ( 1.1) in Theorem 1 follows immediately
from condition ( 2.1) in Theorem 2 . The lemma implies that B(x) = O(log x) .
To show condition (1 .2), choose a large integer m . Let

e E (0,1, . . ., h - 1) .

By (2.2) and (2 .3), we can choose m + 1 pairwise disjoint sets

{bj1 , . . ., bjh-1} C B

such that bj1 < . . . < bjh -I and bj, h-1 < bj+1,1 for j = 1, . . . , m and

ej =bbl+---+bjh_1=-e (mod h)

for j = 1, . . . , m + 1 . Then e l < . . . < e,n+l . Choose

bk > max(el, . . ., em+1)-

Let n = e (mod h) and n >- b k+l . Then n - ej > 0 and n - ej _- 0 (mod h)
for j=I__m+1 . Suppose that n-e;=b,,EBandn-ej =b„EBfor
some i < j- Then b,, > b„ and

bt,=n-e, > bk+I - bk > bk > e, >e, -e,=b„-bt,>b„

569

which is absurd . Therefore, n - ej e C for at least m different e,, and so
r (n) >- m for all sufficiently large n =- e (mod h) . It follows that r(n) - 00 as
n - oo, and condition (1 .2) is satisfied .

Next we show that (1.3) holds. Since c =- 0 (mod h) for all c E C, it follows
that if n -- h - 1 (mod h), then n e W. Fix c e C. Choose bt E B with
bt > c and b t =- 1 (mod h) . Let w = (h - I) b, + c. Then w =- h - 1 (mod h)
and w E W.

(2 .1) b;+1 > (2h - 1) b i for i >- 1,
(2 .2) Ba = {b i E Bib =- 0 (mod h)) is infinite,
(2.3) BI = { b, E Bib =- 1 (mod h)) is infinite,
(2.4) B= B0 UB1 .
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We shall prove that w E W \ hB . Suppose that there exist bi	bh E B
such that w = bi + . . . +bh . Since

(h-1) b, <w < hb, <(2 h - 2) b,<b,+1,

it follows that bi -< b, for all i = l, . . . , h, but bi * b, for some i = I_ ., h .
If bj' * b, for exactly one j E {1, . . . , h }, then

bj' =cEBnC= 0,

which is absurd. If bj' 0 b, and b' * b, then

w=bi+

	

+bh<(h-2) b,+2bt ,<(h-1)b,<w,

which is also absurd. Therefore, w 0 hB .
Let c' E S2 (w) \ (c). Then there exist b,' E B for i = l, . . . , h - 1 such

that w = b, + . . . + bh _ 1 + c' and bj' = b, for some j . Then bj' < b,- 1 . Since

(h-1)b,<(h-1)b,+c=w<(h-2)b,+bt_1+c'

it follows that

c' >- b, - bt_ 1 > ((2h - 2)/(2h - 1))b, > ((2h - 2)/h(2h - 1))w >- 8w .

Thus, condition (1.3) of Theorem 1 holds .
Finally, we consider condition (1 .4) . Let b„ E B = Bo u B1 . If b„ E B o , we

shall show that (1.4b) holds. Choose b, E B1 with b, > b. . Let

w=b„+ (h-1)b, .

Then w < hb, < b,+1 . Since w --- h - 1 (mod h), it follows that w E W. Let
c' E S2 (w) . There exist bi E B such that w = bi + . . . + bh _ 1 + c', where
bi < b, for all i and bj' 5 bt_ 1 for some j. The same argument as above
implies that

c' > ((2h - 2)/h(2h - 1))w >- Sw .

If b„ E B 1 , we shall show that (1 .4a) holds . Choose b, E B 1 with b, > b,, .
The interval (2b, - b, 3b, - b.) contains b,/h + 0(1) multiples of h, and so
b,/h + 0(log b,) elements of C . There are at most B(3b,) 2 = O(log 2 b,) in-
tegers of the form b i + bj - b„ in this interval . It follows that for b, sufficiently
large there exists an integer c E C such that

2b,<b„+c<3b, and bU +c~t_2B .
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Let w = (h - 2) b, + b,, + c . Then w --- h - 1 (mod h), hence w E W. If
w E hB, there exist bl	bh E B such that bí +

	

+ bh = w, but this is
impossible, since

hb,<w< (h+1)b,5 (2h-1)b,<b,+i .

Therefore, w E W \ hB .
Let c' E SZ(w)\ {c} . There exist bI, . . ., b'h - 1 such that

Then bi < b, for i = 1, . . . , h - 1 and so

c'>-w-(h-1)b,>b,>w/(h+1)=8w .

This completes the proof of Theorem 2 .

COROLLARY . For every h >- 2 there exists a minimal asymptotic basis A' of
order h with asymptotic density d(A') = 1/h .

THEOREM 3 . Let h >- 2 . For every a E (0,1/(2h - 2)) there exists a minimal
asymptotic basis A of order h with asymptotic density d(A) = a .

Proof. Let a E (0,1/(2h - 2)) . Let 0 > 0 be irrational . Let B = {bi }°°=,
be a set of positive integers so that { b i 0 } is dense in the interval (0,1/(h - 1))
and b ; +i > (2h - 2)b ; for all i >- 1. Let

Let A = B U C. Then d (B) = 0 and d (A) = d (C) = a . We shall prove that
A is an asymptotic basis of order h and satisfies conditions (1 .1)-(1 .4) of
Theorem 1 with S = (2h - 3)/h(2h - 2) < 1/4 .

Clearly, B satisfies (1 .1) . To show that condition (1 .2) holds, we first fix an
integer N > 2/a . Choose m large . For i = 1, . . . , h - 1, and j = I	m + 1,
and k = I,-, N, we choose pairwise distinct integers b (i, j, k) E B such
that

Let

C= {c>-01{c0} <a} \B.

(3 .1) b(1, j, k) < b(2, j, k) < . . . < b(h - 1, j, k) for all j, k,
(3 .2) b(h - 1, j, k) < b(1, j + 1, k) for j = 1, 2, . . . , m and all k,
(3.3) {b(i, j, k)0} E [(k - 1)/((h - 1)N), k/((h - 1)N)) .

h-1
s(j, k) _ Y_ b(i, j, k) E (h - 1)B .

i=1
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Conditions (3 .1) and (3.2) imply that s(1, k) < s(2, k) <

	

< s(m + 1, k) .
Also, condition ( 3.3) implies that

Let

(s(j, k)0} E [(k - 1)/N, k/N) for j = 1, . . ., m + 1 .

n>2 •max(s(j,k)ij=1, . . . . m+1,k=1, . . . . N} .

If { n0 } E [1/N,1), then { n0 } E [k/N, (k + 1)/N) for some k
N - 1, and

{(n - s(j, k))0} E [0,2/N) C [0, a)

for j = 1, . . . , m + 1. If (n6) E [0,1/N), then

{(n - s( j, N))0 } E [0, 2/N) C [0, a) .

In all cases, n-s(j,N)=cj EBUCfor j=1, . . .,m+1,andC,>CZ>
. . . > c. + , . Since s (j, k) E (h - 1) B and since B is a Bhsequence, it

follows that cj E B for at most one j, and so n has at least m pairwise disjoint
representations of the form (1) . Thus, A is an asymptotic basis of order h, and
r(n) -> oc as n - oo . Condition ( 1 .2) is satisfied .

Let W be the set of all integers w E hA such that if w = a, +

	

+ a,, with
a, E A for i = 1, . . . , h, then a j E C for at most one j. Let

Q=(h-2)/(h-1)+2a .

Since 0 < a < 1/(2h - 2), it follows that 0 < a < Q < 1. Let n be a positive
integer such that { n0 } We shall show that n E W. If not, then there
exists a representation

n = bÍ + . . . +bk + Ck+1 + . . . +C h ,

where b; E B, Cj E C, and 0 < k < h - 2. Since { b' 0) < 1/(h - 1) and
{ cj0 } < a, it follows that

{n0} <k/(h-1)+(h-k)a

=ha+k(1/(h-1)-a)

<ha+(h-2)(1/(h-1)-a)
=(h-2)/(h-1)+2a

which contradicts {n0) >- ,Q . Therefore, k = h or k = h - 1, and so n E W.
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We now prove that condition (1.3) holds. Let c E C. Then (c0) < a < 8 .
The set { { b i 0 ) Jbi E B) is dense in (0,1/(h - 1)), and so there exist infinitely
many b t E B such that bt > c and

(,l3 - {c0))/(h - 1) < {b,0} < (1 - {c0 })/(h - 1) .

Let w = (h - I) b, + c. Then

/3 < {w0) _ (h - 1){b,0} + (c0) < 1

and so w E W. Since (h - 1)b, < w < hb, < bt+i , it follows that w 14 hB,
hence w E W \ hB . Let c' E Q(w) \ { c) . Then there exist bi E B such that

w=bí+ . . .+bh-1+C',

where b, < b, for all i and bjl < bt _ 1 for at least one j . Then

(h-1)b,<w< (h-2)b,+bt_1+c',

and so

c' >_ bt - bt -,

> ((22 - 3)/(2h - 2))b,

> ((2h - 3)/h(2h - 2))w
= Sw .

Thus, A satisfies condition (1.3) .
We show next that (1 .4b) holds . Let b„ (=- B . Suppose that { b O) < 8 . Note

that this is always true for h >- 3, since

{b„O)<1/(h-1)< (h-2)/(h-1)+2a= /3 .

Then there exist infinitely many b, E B such that b t > b„ and

(,(3 - {bu0})/(h - 1) < {b,0) < (1 - {buQ))/(h - 1) .

Let w = (h - 1)b, + b,, . It follows as in the case above that w E W and
c'>Sw for all c'E,Q(w) .

Finally, we consider the case h = 2 and

0<2a=,Q< {b„0) <1 .

There exist infinitely many b, E B such that b, > b„ and
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Let w = b t + b,. Then b,< w < 2b, < br+I, and

P < ( bu0) < {w0) _ {b,0) + {b„O} < l,

hence w E W. Let c' E Q(w) . Then there exists bí E B such that w = bí + c',
where bí < b, I . Then

and so
c'>bt -b, I>b,/2>w/4=Sw .

Thus, condition (1 .4) is satisfied. This completes the proof of the theorem .

COROLLARY. If A is a minimal asymptotic basis of order 2, then d,(A) <
1/2 . For every a E (0,1/2], there exists a minimal asymptotic basis A with
d(A) = 1/2 .

Proof. This follows immediately from Theorems 2 and 3 and the result of
Nathanson and Sárközy [5] .

Open problems . It should be possible to generalize the corollary to Theo-
rem 3 to bases of order h >- 3 . If a E (0,1/h), prove that there exists a
minimal asymptotic basis A of order h with asymptotic density a .

The minimal asymptotic basis A = ( a ; )' I of order 2 and density 1/2
constructed in Theorem 2 has the property that ai+I - a; < 4 for all i and
ai+I - a, = 4 for infinitely many i . It is easy to show that there does not exist
a minimal asymptotic basis A of order 2 with limsup(a i+i - a,) = 2 . Does
there exist a minimal asymptotic basis A of order 2 with fim sup(a, +I - a,)
= 3?
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