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ABSTRACT

We pose the problem of the existence of incongruent covering systems of
residue sets, where two residue sets intersect if and only if their moduli are rela-
tively prime . We show how such covering systems give rise to nearly disjoint cell
covers of a lattice box, and thereby obtain a partial solution . In particular, we
show that the number of primes dividing the 2 .c .m . of the moduli of the residue
sets of such an incongruent covering system must be at least five .

NOTATION

N denotes the natural numb rs, Z the integers, M+ the non-negative integers
and Q the rationale . For a, b E M, < a, b > denotes the integer interval

< a .b >:_ {a,a + 1,- .,b} .

(If a > b this is the empty set .) An empty product is defined to be 1 . The

complement of the set S is denoted S . S1 C S2 denotes that S1 is a subset of S2,
and SI C S2 denotes that Sl is a strict subset of S2 (i .e . S 1 C S2 but S1 # S2) .
If .F is a non-empty family of non-empty sets, the derived family F(') f is the
family of all non-empty intersections of these sets .
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INTRODUCTION

A residue set is a set R C M of the form

R = {k E Z k == a rnod n }

for some a E L n E N This set is denoted a n We refer to n as the modulus

of R and two residue sets are congruent if they have the same modulus If R is

a family of residue sets

R = {ai ni i E >}

the modulus n = nA is division maximal or simply divmax if it is maximal relative

to division among the moduli of the sets of R That is

n I ni n = ni i E I t >

If the sets in R cover then R is a covering system If the moduli ni are all

distinct then R is incongruent

Let R be a family of residue sets which cover Z and have the property that

they are nearly disjoint in the sense that no two distinct residue sets of R intersect

unless their moduli are relatively prime Is it necessary that some of the residue

sets of R be congruent or can R be incongruent? We know of course from

the Newman Zaám result that if the residue sets of R are pairwise disjoint then

necessarily the divmax moduli from R must occur repeatedly We show that

under a certain condition described below a similar result holds for these nearly

disjoint covering systems

Recall the Bell numbers bn n > which count the number of distinct

partitions into subsets of n > bl = b = b = b = b ; =

etc These numbers satisfy the recurrence

where bo =

Our main result is the following

bn = k bk n >
k=



THEOREM Let R = { ai ni i t} be a nearly disjoint family of

residue sets which cover a V R and let P pt be the prime divisors

of the f c m of the moduli ni Assume

i

min Il pj bk t pj for every k E k >
j=t k j=

Then ni = nj for some i j

The repetition of a modulus in R derives from the repetition of a divmax modulus

in the associated system RD The precise statement appears below in §

Special cases of the Theorem

If e then is satisfied vacuously hence there is no nearly disjoint
incongruent covering system the k c m of whose moduli is divisible by at

most primes

ü There is no nearly disjoint incongruent covering system the c m of

whose moduli has precisely distinct prime divisors if any of the following
conditions hold

a One of the primes is >_

b

c

d

Similar other conditions can be given

§l LATTICE GEOMETRY

Let n E P and let S C L° For i E n > define the i th projection ai S

of S by

Ti S {yi U = y yn E S}

For z = x • • x„ E L" with xi >_ i c n > define the n dimensional



lattice box or simply box

B=B n x ={y= yl yn yi xi iE n> }

_ rl B X X nn B

where i B _ xi > i E n > If xl x n = d then B n x is

the d cube or simply cube Q n d

Given a box B = B n x let I C n > and for any i V I let ui be any fixed

integer in ai B An I cell or simply cell of B is a set of the form

i

C _ {y = yl • • yn yi xi for i E I yi = ui for i « I}

_ r C X X lrn C

then C n C

where ri C _ ri B for all i E I and ai C _ {ui} for all i V I The set I is

the index of C denoted

I = Index C

Two cells of B are parallel if they have the same index The dimension of a cell

C is

dim C = Index C

LEMMA I Let C C be cells of an n dimensional box B

If c r C then c n C is a cell of B witá

Index C n C = Index Cl n Index C

ü If

Index C U Index C _ n >

PROOF Both parts of this Lemma follow from the observation that

Cl n C = r Cl n xl C X • • • X n Ci n n C •



Let C be a family of cells of a box B A point y E B is isolated with respect

to C if for any other point z E B there exists a cell in C which contains y but not

z Equivalently V E B is isolated if

or equivalently if

n C CEe YEC = {y}

n Index C C E C Y E C =

Denote the isolated points of B with respect to C by Isol B C or simply Isol B

The family C is nearly disjoint if whenever C C are distinct cells of C with

Cl n C J then

Index Cl U Index C _ n >

LEMMA Let C be a nearly disjoint family of cells of an n dimensional

box B

i If Co • • • Ct are distinct members of e with n _ O Cj then

Index Co D Index ni= Ci

ű Suppose B ~ C Then to each isolated point y E B corresponds a unique

sub family C C C for which

n C CEC ={y}

PROOF i By the nearly disjointness of C

Index Co U Index Ci _ l n > i E t >

Thus by Lemma l i

t
Index CO U Index n Ci = Index Co U n Index Ci

i= [i=
tn [Index CO U Index Ci ] _ n >

i=



ü Let C C C be such that

n C CEC = {v}

and let C be any cell in C which contains y If C V C then it would follow from
part i above that C = B

LEMMA III Let C be a nearly disjoint family of cells of an n dimensional

box B and let C be any sub family ofC with

Then

C ={CnC CEC CnC oo}

is also a nearly disjoint family of cells of C and

Isol C C = Isol B C n C

Furthermore if Dl n C D n c* are distinct parallel cells of C Dl D E C
then Dl D are distinct parallel cells of C

PROOF To see that C is nearly disjoint observe that if
Cl n C n C n C C C E C CI C then Cl n C and so

Index CI U Index C _ n >

Thus by Lemma I i

Index Cl n C U Index C n C

_ [Index CI U Index C ] n Index C = Index C

Next regarding the isolated points observe that for any U E C

n C CEC VEC =n C CEC YEC

Finally observe that if D E C \ C D n C then by Lemma II i
Index D D Index C Now if Dl n C D nC are distinct parallel cells in C

C =n C CEC



then D D E C \C Since Index D and Index D each contain Index C

and since Index D n C = Index D n C it follows from Lemma I i that
Index DI = Index D

LEMMA IV Let Ik Ik k E l t > be subsets of l n > satisfying

t t

n Ik = n Ik

Ij U Ik = Ij U Ik = n > k

Then Ik = Ik k E t >

PROOF

Ik~U~=n = k
j k j k

PROPOSITION V Let C be a nearly disjoint family of cells of an n

dimensional box B If

JIsol B n DI > bk

E

for some k E n > and some k dimensional cell D of B then there are two

points y z E Isol B n D with the following property Each cell of C containing y

is parallel to a corresponding cell ofC containing z and vice versa

PROOF Without loss of generality we may assume that B ¢ C since
C \ {B} is nearly disjoint and keeps the same points isolated The proof proceeds
by induction on n = dim B The case n = is easy

Let C _ {C E C C D D} If C then we may apply Lemma III and
consider C instead of C thereby reducing the dimension from dim B to dim C
Observe that C B since we assumed that B ~ C In this case the induction
hypothesis applies

Otherwise if C = then on account of the nearly disjointness of C for any
isolated point y E D the family

Ily _ {Index D \ Index C C E C y E C}



forms a partition of Index D Since there are only a total of bk partitions of
Index D it follows that there must be two isolated points y z E D with

Ey = IIz _ {Si Si

Let Cj andCj be the unique cells of C containing y and z respectively for which

Index Cj n D = Index Cj n D = Index D \ Sj j E t >

Then for i j since Si n Sj =

Index Cá n D U Index Cj n D = Index D

and so by Lemma I ü Ci n C ik Thus by the nearly disjointness of C the sets

Ij = Index Cj h = Index Cj

satisfy the hypotheses o£ Lemma IV It follows from this Lemma that C and Cj
are parallel j E t >

COROLLARY VI Let C be a nearly disjoint family of cells of the box B n
If

JIsol B n DI > min vi bk t
á=

for some k E n > and some k dimensional cell D of B where vl v

vk is a consecutive ordering of xi i E Index D then there are two points

y z E Isol B n D with the following property Each cell of C containing y is

parallel to a corresponding cell ofC containing z and vice versa

PROOF D can be partitioned into=vá cells of dimension k t

§ CYCLIC GROUP ALGEBRA

Let G = L m Z be the additive cyclic group m > modulo m and
let m have the prime factorization

/



Let B be the box

B = Q a Pl x x Q aL P •

Observe that B is the box B n x where n = Ej~= aj and

xk = Pj for ai k
E

ai
i j i j

Recall the mapping G B defined in [ ] Given u E G and j E f > let

L
m = Pj° p PL

j=

IP u = x j _ XI x l E Q aj pj

be the aj tuple of pj ary coefficients for u mod p~ That is

~ i u = x j u mod p~ _ x i P~

i=

Then set
ip u ° á u ~ L u E B

The following result proved in [ ] describes an important property of

LEMMA VII is bijective and if K is a cosec of G say

L
IC~ _ pi Qj E aj > E f >

j=

then C = ~I K is a cell of B with index

P

Index C = U ai { • • • ij }
j=

Two cosecs Kl K C G are congruent if ~KiI _ IK Let K be a family

of cosecs of G = M mZ An element u E G is isolated with respect to k if

for any other element v E G there exists a cosec in K which contains a but not

v Denote the isolated points of G with respect to K by Isol G K or simply

Isol G The family K is nearly disjoint if whenever Kl K are distinct cosecs of

k with K fl K then



k c m Jk I IK D = m

The covering function f = fK G Z is defined by

f u = I Ii E IC u E IQ I = the number of cosets in IC which contain u

PROPOSITION VIII Let ÍC be a nearly disjoint family of cosets of

G = XlmX which cover G and suppose G V k Then

F f v WU =
uUsal G

where w is a primitive mfh root of unity and f = fK is the covering function

PROOF It follows from Lemma VII that

e e m IK IK U = m Index b Kl U Index D I _ n >

where n is the dimension of B _ G Then C _ á C is a nearly disjoint family

of cells of the box B which cover B and

Isol B _ Isol G

Thus by Lemma II ü to every isolated point u E G there corresponds a unique

sub family V C IC with

n K K E K _ {u}

For any coset K C G with IKI > we have

uEK

Since IC covers G we can use the inclusion exclusion principle now to write

I f u W U = _ Wu Wu _ Wu

ucr I G vEG KEK uEK KI K EK uEK nK
IKJ> IK nK >

Wu f =
K K K EK uEKInK nK
K nK nK >

E



The next result is from Conway and Jones Thm ]

LEMMA IX Let U C L and {qa u E U} C Q be such that

EaEU gam = where Lo a primitive mt h root of unity Suppose that E U

and that no proper subsum E EU q„w° equals zero C U C U Then

~Ul > J p

where
m

r =
g c d u u E U

and the sum here is over the distinct prime divisors of r

§ PROOF OF THEOREM

Let C be a family of cells of a box B The index I = Index C C E C is

subset minimal or simply submin if it is minimal with respect to set inclusion

among the indices of the cells of C That is

PI

C E C Index C C I Index C = I

Similarly let k be a family of cosecs of a cyclic group G The order n = K I

K E C is division minimal or simply divmin if it is minimal with respect to

division among the orders of the cosecs of K That is

K E C IK I I n IK I= n

Observe by Lemma VII that n = Kl is divmin in C if and only if

I = Index ~D K is submin in ir

THEOREM X Let C be a nearly disjoint family of cosecs of X rnX which

cover G and suppose G ~ K Let pi pt be the prime divisors of m

Assume

k

hk = min pj bk_ t ~ pj k E Q >
= j=

Let n = KI I be divmin for Then there exist two distinct congruent cosets



K K E of order n such that each cosec of C containing K is congruent to a

corresponding coset of K containing K and vice versa

PROOF First observe that automatically holds for k so that in

fact the assumption of the Theorem is equivalent to

k
h ~_ pjIlk
j=

kE »

Let C be a nearly disjoint family of cells of an n dimensional box B which

cover B Let I = Index C C E Clll be submin in C In particular

Index C I for any C E C Define the cell

Cs ={y= y • • • y„ EB yi=O for iEI}

Observe that Index C = I Now C induces a nearly disjoint family of cells

C =ICnC CEC CnC }

which cover C Furthermore there is a one toone correspondence between iso

lated points y E C with respect to C and cells in CM parallel to Cl Indeed

if

then

C n CEC YEC = {y}

J= Index fl C E C V E C» C I

and since I is submin J = I Additionally if D i D E C are such that Dl fl C

and D n C are parallel then since Index D and Index D each contain I it

follows from Lemma I i that in fact D and D are parallel Thus if we establish

that C has two isolated points y and z with respect to C for which the cells of

C containing them correspond and are parallel one to another then it will follow

that CM contains two I cells with this same property relative to C

In our case let C _ á C be the family of cells of the box B _ D G which

correspond to the cosecs of k Then = Index ~D K is submin in CM =

D C By Lemma VII restricting to the cell C defined above corresponds to



restricting to the quotient G S mIM where SI is the subgroup congruent to

Ií and ml = rn IKI I Thus by restricting to the cyclic group Gl = G S we may

assume that Kl is a singleton In other words it suffices to prove our Theorem here

for the special case where Kl is an isolated singleton Furthermore by shifting

the cosecs in C all by a fixed amount we may even assume that Kl = { So let

us make that assumption now!

Next as in [ ] let S be the subgroup of G with

e
IS I Pj

j=

Then IC induces a nearly disjoint family of cosecs of S

which cover S„ Let in = IGI have the prime factorization

j=

Suppose the element u E S is isolated with respect to C i e

Then we claim that on account of the nearly disjointness of IC the cosecs K E JC

which contain a have the following special property

P

Z = {KnS KEK KnS }

rn = lPi

S n K KEK uEK = {u}

If pj I IK I then p~ I IKI

In other words if ~K n S I = IljEJPj for some J C f > then IKI = rljEJPj

In particular if two cosecs LI n S L A S E IC containing isolated points of S

are congruent then in fact the cosecs LI L E K are themselves congruent

To see why P holds suppose K E C contains the isolated point u E S If

PjtIK n S I then pj{IKI and so by the nearly disjointness any other cosec L of

IC containing u must be such that pJa I ILI

The upshot of this is that it suffices now to show that there are two isolated

points of S with respect to k for which the cosecs of C containing them cor



respond and are parallel one to another In other words it suffices to prove our

Theorem here for numbers m = Hj=l pj which are square free So let us make

that assumption now

In summary then it suffices to prove our Theorem for the special case where

i m = R ~=l pj is square free

ü E G is an isolated point

The rest is quick According to Proposition VIII

I f u u =
uElsol G

where w is a primitive mt h root of unity and f = fK is the covering function Let

LuEu l f u w be a minimal subsum which also equals zero E U C Isol G

This polynomial then satisfies the hypotheses of Lemma IX

Suppose the conclusion of our Theorem were false If

r = m = pj IJI = kg c d u u E U
jEJ

then the isolated points I D u u E U} all lie in a k dimensional cell of

Thus by Corollary VI

On the other hand by Lemma IX

B _ cD G = B pl pe»

IUI Flk

k
IUI > ~_ pj > ~_ pj

jEJ j=l

Regardless of what k E I f > is though this conflicts with

i

REMARK Observe that the minimum in the expression for hk in can

be slightly simplified to



t
µk = min pj bk tt k j=

with k replaced by k This is because

Petik t > bk t for k> t E k k

We use this observation in the statement of Theorem XI below and the Theorem

in the Introduction

From Theorem X follows the Theorem in the Introduction In fact we can say

something about which moduli are necessarily repeated

THEOREM XI Let R be a nearly disjoint family of residue sets which

cover X X R and let Pl lot be the prime divisors of the f c m of the

moduli of the sets of R Assume

t k
min ~~ pj bk_ t pj for every k E P
t k j= j=

Let n be any divmax modulus of Z Then there exist two distinct congruent sets

R R E R l of modulus n such that each set of R containing R is congruent to a

corresponding set of R containing R and vice versa

The conclusion here means that we can label all the sets {R R J of R

which contain R and all the sets Ra} of R which contain R so that Ri

is congruent to R i i E s In particular it will follow that these two families

consist of the same number s of sets It may be that Ri = Ri for some i but

this cannot be the case for all i E s since R and R are distinct

For example consider the nearly disjoint covering system

R = { }

Then

R ~ _ { }

and the divmax modulus n = is repeated R = R = There are

s = sets of R containing R R = R = Likewise there are sets of



R containing Rj = R = The sets Ri R i are congruent in fact

equal and the sets R R are also congruent In particular R contains the two

distinct congruent sets R and R

PROOF Let R = {¢ n i E t } and set m = f c m nl n

Then

R n G _ jai ni n G i E t }

is a nearly disjoint family of cosecs of G = M mil Furthermore G ~ R n G

Observe that

R n G l t l = ital n G

and that if nim then

la n n GI = m n

implying that residue sets of Rhl with divmax moduli corresponding to cosecs of
R n G hl with divmin order Apply Theorem X then with K = Rn G to arrive

at the desired conclusion
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