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1 . INTRODUCTION

Let Xl , XZ , . . . be a sequence of independent, identically distributed
random vectors taking values from R' with distribution

P{x1=(0,1){= {xl=(0,-1){=P{xl=(1,0){=P{Xl=(-1,0)J-'

and let

So =0=(0,0)

	

and

	

S(n) =S„=XI+Xz+''-+X„

	

(n=1,2, . . .),

i .e ., { S„ { is the simple symmetric random walk on the plane . Further let

~(x, n) = # {k :0<k<n, Sk =x{

(n = 1, 2, . . . ; x = ( i, j) ; i, j = 0, ± 1, + 2, . . .) be the local time of the random
walk. We say that the circle

Q(N) _ {x= (i> j) : ~1x1J _ (

	

j2)1/2 < N{
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is covered by the random walk in time n if

~(x, n) > 0

	

for every x c Q(N) .

Let R(n) be the largest integer for which Q(R(n)) is covered in n . We are
interested in the limit properties of the random variables R(n) as n -> 0C .
This question was proposed by Erdös and Taylor [檘] and they claim "we
can show using the methods we have discussed above that" for any e > 0

R(n) > exp((log n)' 1' - F)

	

a .s .

for all but finitely many n "but we have failed to get a satisfactory upper
estimate and have no plausible conjecture ."

This paper is devoted to the above question and some related problems .

2. A LOWER ESTIMATE OF R(n)

In this section we prove

THEOREM 1 . For any e > 0 we have

(log n )i 112
R(n) > exp

(0092
n)s/a+E

	

a.s .

for all but finitely many n where log, is the k times iterated logarithm.

Before the proof we present a few notations and lemmas .
Let y(x, n) be the probability that in the first n steps the path does not

pass through x i .e .

y(x,n)=F1{ (x,n-1)=0 } .

Let a(r) be the probability that the random walk {S„} hits the circle of
radius r before returning to the point 0 = (0, 0), i .e .,

a(r)= P1{inf{n : I S,11 > r} < inf{n : n > 1, S„=0} } .

Further let fl(r, t) be the probability that starting from a point of the
circle-ring r < lxll < r + 1 the particle hits the point 0 = (0, 0) before hiting
the circle of radius rt, i .e .,

/f(r, t)=P{inf{n : S„ + ,,,=0} <inf{n : IISn+mll >rt} I r<, li S,11 <r+1} .



Finally let

and

Since

and

檘8檘/2檘/1-12
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ó (t) = S (t, r) = P{max IISkII<r}

µ(x) = µ(x, n) _ P I ~(0, n) < x log n } .

LEMMA 1 . Let Ilxjl = - ' n' /2 with 20 < 0 < n'/檘. Then

Y(x,n)=1-21ogn
C
1+OCllg2 ~ 1~ .

	

(2.1)

lim µ(x, n) = 1- exp(-檘zx)

	

111 /

	

(2.2)
n a

for 0<x< (log n) 檘 /檘 and the limit is approached uniformly in this range ;

8(t)-
1- exp( - O(t - '))

	

if t-~0,

	

(2.檘
{exp(-O(t))

	

if t, co .

	

)

Proof. (2 .1) (resp . (2.2)) are proved in Erdös and Taylor [檘] cf. (2.18)
(resp. Theorem 1) . The proof of (2.檘) is trivial .

Remark 1 . (2 .2) implies

P{á(0, n)=0},: :n/logn

	

(2.檘)

(cf. also Dvoretzky and Erdös, [2]).

LEMMA 2 . 1檘re have

lim a(r) log r=檘r/2 .

	

(2.檘)r- x

Proof. Clearly we have

{inf{n : II Sn II > r} > inf{n : n > 1, Sn =01 {
c I ~(0, r2 log r) > 0} u { max IISkII <r}.O-<k<-r2 logr

P { ~(0, r2 log r) = 0} ,: 檘t/2 log r

	

by (2.檘)

P{

	

maxlog II Sk 11 < r} = o(1/log r)

	

by (2.檘),o



1 檘2

	

ERDOS AND RÉVÉSZ

we have

Observe also

By (2.1)

2) 2 log0I=1-y(x,Kr
~logKr2

a(r)
+ o(1)
21og r

a(r) <PI

	

max

	

ISdI >r} +P{~(O,r2(logr)- ') =0} .
0,< k < r2 (log r)-

Applying again (2.檘) and (2.檘) we obtain (2.檘) .

LEMMA 檘 . For any r > 0 and r big enough we have

fl(r, t) < (1 + E)
log
109

g

	

(2.檘)

provided that 1 < t < o((log log r) b ) for any 檘 > 0 .

Proof. For any K> 0 we have

/l(r,t)<P{~(0,Kr2+m)- (0, m) >~ IIr檘 S», 檘r+1}

+P{

	

max

	

IISkII <rtIr< IS_ ~r+I}=I+11 .
m<k<m+Krz

for any r,< IIxII <r+ 1, where O =K' 12r/IIxII and

II,<P{ max IIS,II ,<(t+2)r }
=檘

	 K I .
0<k<Krz

	

(t+2) 2

By choosing K= (t + 2) 2(log log r)'" (E > 0) we obtain

+E) log
	 檘r

for any r > 0 if r is big enough and 1 < t < o((log 2 r) E ) (for any r > 0) .
Hence we have (2.檘) .

LEMMA 檘 . For any g > 0 and r big enough we have

fl(r, t) >, 1/E log r

	

(2.檘)

provided that t > (log log r) 1/2+s for some 檘 > 0 .
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Proof. For any K> 0 we have

(~(r, t), FD {~(O, Kr2+m)-~(O, m) ,11 r<. IIS_II ~r+1}
-Fl{

	

max

	

ISk11 >rtIr< 1IS,n I <r+1}=I-(1-II),m<k<m+Kr2

-1)~
1-II,<P{ max IISkII>r(t-1)}~expC-0((t	K )/

0<k<Kr

provided that K > 檘00 is an absolute constant and t = t(r) -> oo as r --> oo .
Choosing t, (logz r)'i'+s with some b > 0 we obtain (2 .檘) .

In order to formulate our next lemmas we introduce some further
notations. Let

po=0,

	

p,=min{k :k>0,Sk=O}, . . .

p,=min{k :k>pj,,S,=0}

	

U=2,檘, . . .),

X;(r) _
(1

n
Yn(r) _

	

Xi(r),
i=1

I log K/log Kr 2

if

	

max

	

II Sk II , r,
p_1<k<p ;

0

	

otherwise,

Z,(r) = Y~(0n) (r) .

Clearly Yjr) is the number of those excursions (among the first n) which
are going farther than r while Zjr) is the same number among the excur-
sions completed before n ;

T, =i,(r)=min{n : IISnII > r},
'r2= iz(r, t) =min{n : n, ri, IISn Ij > rt},

i檘=T檘(r, t)=min{n : n>T2, IISnII 檘r},
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T2k=T2k(r, t)=min{n :n,'rzk-1, IISnII >rt},

T2k+i-T2k+,(r, t)-min{n :n,i2k, IISnII ~r},

0n=0(n; r, t)=max{k : izk+i ~n} .

We say that 0, is the number of the r rt excursions completed before n .
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LEMMA 檘 . With probability one for any e > 0 we have

for some 檘 > 0. Then for any e > 0

LEMMA 檘 .

log n
(log 2 n)'+E

~(0, n) < (1 +e) 檘c(log n) log, n

for all but finitely many n .

Proof. See Erdös and Taylor [檘, Corollary on p.1檘檘 and
Theorem 檘.C] .

LEMMA 檘 . Let r = r„ be a sequence of positive numbers

for some 8 > 0. Then for any e > 0

r„ T co,

	

n
> (log n) 2+ó

log r

(1-e)檘rn

	

(1+e)檘n
2 log r

	

Yn(r)

	

2 log r

with probability one for all but finitely many n .

Proof. It is a trivial consequence of Lemma 2 .

Lemmas 檘 and 檘 imply

Let r = r„ be a sequence of positive numbers with

lo
gn > (109z n )s+ó
g

log n

	

1
y Z„ (r) < (1 + e)

檘U2 (log n) log, n
(log, n)' +E log r

	

2

	

log r

with probability one for all but finitely many n .

LEMMA 8 . Let r = r„ be a sequence of positive numbers with

g > (1o9z n) 檘lo

	

+a
g r

with

for some 檘 > 0. Then for any e > 0 and for all but finitely many n we have

O(n ; r, t) < e(log n) log, n

	

a.s.
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t, (log, r)'I 2 + s

	

for some S > 0

log n

	

1
0(n' r' t)

		

(2.9)
(1092 n)' +E 109檘 r

t= o((log 2 r) ó )

	

for all 8 > 0 .

Proof. (2 .8) follows from Lemmas 檘 and 檘, (2.9) follows from Lem-
mas 檘 and 檘 .

Proof of Theorem 1 . Let x be an arbitrary point of the circle of radius
rt, i .e ., ~Jxll < rt . Then by (2.1),

P{~(x, T2i- I + Kr2t2)
_ ~(x, *r 2i-1)

1
1 S(izi-1(r, t)},

log
2
K

2

	

a.s.,

	

(2.10)log Kr t

provided that 檘00 < K < r 檘 t 檘 . By the law of iterated logarithm one gets that

~(i+1)[(2KIog2rt) 1 i2 ]( r, t)-T,[(2KIog2rt)1/2] (r, t),Kr 2 t 2 .

	

( 2.11)

Consider the paths

1Sp 'C2i[(2K1092rt)[i2]-1(r, t) <i <T2i[(2KIog2rt)1/2]-1(r, t)+Kr2 t 2 }

	

(2.12)

i 1 2 檘,

	

log n

	

1

	

1
= . . .,

(log e n)' +E
109檘 r (2K 1092 rt) uz

and observe that by (2.9) all of these paths are included in the path
{S;, 1 < j < n} . (2.11) implies that the paths (2.12) are disjoint and (2 .10)
implies that for any x belonging to the circle of radius rt and for any i the
probability that the path of (2 .12) does Dot pass through x is less than or
equal to

log K
1

	

log Kr2 t 2 '

assuming (2.9) and (2.11) .
Consequently assuming again (2.9) and (2.11), the conditional
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probability that the path ISj , 1 < j < n } does not pass through x is less
than or equal to

log K

	

log n(iogz n) ' ~oog檘 r) '(2K log2 rt) 1,2

1 log Kr 2 t 2

log K log n
exp

- (log e n)"' log 檘 r(2Klog2 rt) 1 2 log Kr 2 t 2

provided that
檘00<K<r 檘 檘

1	gn > (1o92 n)檘+s

	

for some 檘 > 0,
g

t = 0((1092 r)')

	

for all b > 0.

Choosing K=檘00, t=109 檘 r, r=exp((log n) i / 2 • (log, n)-(檘/檘+2E)) we obtain
that the conditional probability that the path does not pass through x is
less than or equal to

(log n )'/ 2

	

.
exp - (109z n)檘/檘-E

Consequently the probability that the path does not pass through all points
of the circle of radius rt is less than or equal to

(log n) 1/2

	

(log n)1/2

exp 2 (1092 n)檘/檘+2e eXp

	

(1o92 n)檘/檘-r '

which easily proves Theorem 1 .

檘 . CIRCLES COVERED WITH POSITIVE DENSITY

Theorem 1 gave a lower estimate of R(n) . Unfortunately we do not have
any non-trivial upper estimation . The result of Theorem 2 suggests that
R(n) can be much bigger. In order to formulate our result, introduce the
following notations

I(x, n) _
(1

	

if ~(x, n) > 0,

	

(檘.1)
j O

	

if ~ (x, n) = 0,

K(N, n) _ ( N2檘í)-' y I(x, n) ;
x e Q(N)

i .e ., K(N, n) is the density of the points of Q(N) covered by the random
walk {Sk, 0 < k < n } . We prove



THEOREM 2 . For any 0 < a < 1/2

lim sup K(n", n) >, (1- 2a) [ I - ((1
n -- o

The proof is based on the following two lemmas .

LEMMA 9 . Let 20 < 1Ix I < n'1檘 . Then

2 log lxll 1 + 0 (109檘 1 ~1檘)) .Iy(x, n) =
log n

	

log x11

Proof. See Erdös and Taylor [檘, (2.1檘)] .

LEMMA 10. We have

IE(I(x, n) I(y, n)) < ( 1- v(x - y, n))(1-(v(x,n)+v(y, n))l2)
1 - y(x - y, n)12

Proof. For any lattice point z let
v z =min{k : k>0, Sk =z} .

Then we have

F(I(x, n) I(y, n))

=P(I(x,n)=1,I(y,n)=1)
n

_ I P{I(x,n)=1,I(y,n)=IIv x =k<v,}P{v x =k<v y }
k=0

•

	

P {I(x, n) = 1, I(y, n) = 1 1 v y = k < v x } P{v„=k<vx }
k=0

n
_

	

P{I(y,n)=11v z = k<vy } P{v , =k<vy }
k=0

n
•

	

P{I(x,n)=11 vy =k<v x } P{vy =k<vx}
k=0

n
_ Y P{I(y - x, n - k) = 1} P{vx =k<v y }
k=0

n
•

	

Y P{I(x - y, n - k) = 1 } P{vy =k<vx }
k=0

,< P{1(x-y,n)=1}P}

	

{ {vx=k<v }+ {vy=k<vx } }~
k-0

=P{I(x-y,n)=1}P{I(x,n)=Iorl(y,n)=1}
=P{I(x-y,n)=1}[P(I(x,n)=1)

+ P(I(y, n)=1)- P(I(x, n)=1, I(y, n)=1)] .

n

CIRCLES COVERED BY RANDOM WALK

1)'/']

	

a.S.

1檘檘

(檘.2)
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Hence

and we have the lemma .

We get

and

P(I(x, n) = 1, 1(y, n) = 1)

< P(I(x- y, n)= 1)[P(I(x, n)=1)+ P(I(y, n)=1]
P(I(x - y, n) = 1) + 1

Proof of Theorem 2 . Apply Lemmas 1 (resp . Lemmas 9 and 10) with

lo a < ~jxj~, 11ylj ; lx-ylj <n"

	

(0<a<z) .
g n

á
E(I(x, n) 1(y, n)) <

(1 - 2a)
(1-a)

	

(n big enough)

EI(x, n) ,t 1 - 2a .

A simple calculation gives

IE(K(na, n)-EK(na, n)) 2 < (11	2a)2- (I -2a) á

and

EK(nx, n) z 1 -2a .

Hence by the Chebishev inequality we have

P{K(na,n)>(1-a)(1-2a)[I-((1-a)-'-1)iá]} '8E >0

for any a > 0 if n is big enough . Hence we have Theorem 2.

檘. SOME FURTHER PROBLEMS

In Section 2 we have studied the area of the largest circle around the
origin covered by the random walk {S,t , k < n } . The analog problem is
clearly meaningless since in Rd (d > 檘) the largest covered sphere is finite
with probability one . However, one can ask in any dimension about the
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radius of the largest sphere (not surely around the origin) covered by the
random walk in time n . Formally speaking, let

Q(N, u) = {x : ~ Ix- ull < N}

and R*(n) be the largest integer for which there exists a r .v . u=u(n) such
that

~(x, n) > 1

	

if x E Q(R*(n), u) .

It is trivial to see that in Rd

R*(n) > Const(log n)"

1檘9

However, we do not have any non-trivial estimate .
In case d= 2 clearly R*(n) > R(n) . We conjecture that R*(n) will not be

larger than R(n), but cannot settle this question. In fact this question is
somewhat related to the problem of favourite values (cf. Bass and Griffin
[1], Erdös and Révész [檘], (198檘), Erdös and Révész [檘] ) .
The analogous question in the case of spheres covered with positive

density can be also raised.
We also propose to investigate the area T„ of the smallest convex hull of

the path {Sk , k < n} . Here we mention only a trivial result,

Tn < 2nn log z n

	

a.s .

	

(檘.1)

for all but finitely many n,

Tn > rn logzn

	

a.s .

	

i.o .

	

(檘.2)

with some suitable e > 0 .

Proof. (檘 .1) is a trivial consequence of the law of iterated logarithm . Let
Sn = (Un , Vn ) . Then for any e > 0

P { I Vn I <18

	

, Un > e(n log z n)"} = O((log n) - E 2/ 2 ).

Consider the first crossing of the path after n with the positive y axis
assuming that JVn < Evn, Un > e(n logz n) 1/2 . Then with a positive
probability this crossing point will be farther from the origin than
(e/2)(n logz n)' 12 . The time needed to get this point will not be more than n
with probability O((logn)-f) . Hence the path IS,, k<2n} meets the
points (e(n log z n) i / 2 , 0) and (0, (E/2)(n logz n)'/2 ) with probability
O((log n)-2E) . Having this result, (檘 .2) can be obtained with the usual
methods .
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Note added in proof. The following result can be obtained trivially :

THEOREM 2* . For any 0 < a < 1/2

ERDOS AND RÉVÉSZ

lim sup K(n a , n) >_ 1 -2a .

	

as .
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