8

ON THE IRRATIONALITY OF CERTAIN SERIES: PROBLEMS AND RESULTS

P. Erdös

During my long life I have spent lots of time thinking about irrationality of series. The reader with a little maliciousness may say "spent and wasted" since I have never discovered any new general methods nor had any spectacular success like Apéry. Nevertheless I hope to convince the reader that not all of it was completely wasted. First of all, I state some of my previous results several of which were obtained with E. Straus. I state many unsolved problems and also prove some new theorems.

I proved more than 30 years ago [1] that for every integer $t>1$,

$$
\sum_{n=1}^{\infty} \frac{d(n)}{t^{n}}=\sum_{n=1}^{\infty} \frac{1}{t^{n}-1}
$$

$(d(n)$ is the number of divisors of $n)$ is irrational. Chowla conjectured that the same holds for every rational $t>1$. This is almost certainly true but is unattackable by my methods. It is very annoying that I cannot prove that $\sum_{n=1}^{\infty} \frac{1}{2^{n}-3}$ and $\sum_{n=2}^{\infty} \frac{1}{n!-1}$ are both irrational (one of course expects that $\sum_{n=1}^{\infty} \frac{1}{2^{n}+t}$ and $\sum_{n=1}^{\infty} \frac{1}{n!+t}$ are irrational and in fact transcendental for every integer t.) Peter Borwein just informed me (June 1987) that he proved that $\sum \frac{1}{2^{n}+r}$ is irrational for every rational r. Denote by $\nu(n)$ the number of distinct prime factors of $n ; \varphi(n)$ is Euler's φ function and $\delta_{k}(n)$ the sum of the k-th powers of divisors of n. It is very annoying that I cannot prove that $\sum_{n=1}^{\infty} \frac{\nu(n)}{2^{n}}$ is irrational; perhaps here I am overlooking a simple argument. $\sum_{n=1}^{\infty} \frac{\varphi(n)}{2^{n}}$ and $\sum_{n=1}^{\infty} \frac{\delta(n)}{2^{n}}, \delta(n)=$ $\delta_{1}(n)$, are no doubt also irrational but this is probably unattackable by my methods.

Kac and I [2] proved that $\sum_{n=1}^{\infty} \frac{\delta_{h}(n)}{n!}$ is irrational for $k=1$ and $k=2$. Our proof does not seem to work for $k>2$, but perhaps we again are overlooking a simple argument.

Straus and I [3] proved that if $1<a_{1}<a_{2}<\ldots$ is a sequence of
integers then

$$
\sum_{n=1}^{\infty} \frac{d(n)}{a_{1} a_{2} \ldots a_{n}}
$$

is irrational; we conjectured that it suffices to assume that $a_{n} \rightarrow \infty$ but could not prove it. We also conjectured that if $a_{n+1} \geq a_{n}$ then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\varphi(n)}{a_{1} \ldots a_{n}} \text { and } \sum_{n=1}^{\infty} \frac{\delta(n)}{a_{1} \ldots a_{n}} \tag{1}
\end{equation*}
$$

are irrational, but we could only prove (1) if we made some further assumptions on the growth properties of the a 's. Observe that $a_{n}=$ $\varphi(n)+1, a_{n}=\delta(n)+1$ shows that $a_{n} \rightarrow \infty$ does not suffice for the irrationality of (1). I further proved that if $p_{1}<p_{2}<\ldots$ is the sequence of primes then $\sum_{n=1}^{\infty} \frac{p_{n}^{h}}{n}$ is irrational for every k [4]. I could not prove that $\sum \frac{p_{n}^{k}}{2 n}$ is irrational for every k. This is probably very difficult already for $k=1$. It seems reasonable to expect that if $g_{n} \geq 2, g_{n} / p_{n} \rightarrow 0$ then

$$
\begin{equation*}
\sum_{n=1}^{\infty} p_{n} / g_{1} \ldots g_{n} \tag{2}
\end{equation*}
$$

is irrational, but I can prove the irrationality of (2) only under much more restrictive conditions; $g_{n}=p_{n}+1$ shows that some growth condition is needed for the irrationality of (2).

A few years ago I proved [5] that if $n_{k+1}-n_{k} \rightarrow \infty$ then

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{n_{k}}{2^{n_{k}}} \tag{3}
\end{equation*}
$$

is irrational. The proof is not entirely trivial. I think (3) remains true if we assume only that $n_{k} / k \rightarrow \infty$, but unless I am overlooking a simple argument my proof breaks down. In this connection there are two questions which I could not settle and which particularly annoy me. The first question states: Does there exist a sequence $n_{1}<n_{2}<\ldots$ for which $\limsup n_{k+1}-n_{k}=\infty$ but $\sum_{k=1}^{\infty} \frac{n_{k}}{2^{n_{k}}}$ is rational? The answer is almost certainly affirmative. The second question states: Let $q_{1}<q_{2} \ldots$ be the sequence of square free numbers. Then $\sum q_{n} / 2^{q_{n}}$ surely must be irrational, and in fact this should hold if the q 's are an arbitrary subsequence of the square free numbers.

Several related problems are stated in my book with Graham [6]. Does the equation

$$
\frac{n}{2^{n}}=\sum_{k=1}^{t} a_{k} / 2^{a_{k}}, \quad t>1,
$$

have a solution for infinitely many n, \dagger or perhaps for all n ? Is there a rational x for which

$$
x=\sum_{k=1}^{\infty} a_{k} / 2^{a_{k}}
$$

has two solutions?
It is a simple exercise to prove that if $n_{k}^{1 / 2^{k}} \rightarrow \infty$ then $\sum \frac{1}{n_{k}}$ is irrational, and it is easy to see that the condition $n_{k}^{1 / 2^{k}} \rightarrow \infty$ cannot be weakened. On the other hand I proved [7] that if

$$
\begin{equation*}
\limsup n_{k}^{1 / 2^{k}}=\infty \text { and } n_{k}>k^{1+z} \tag{4}
\end{equation*}
$$

for all k then $\sum \frac{1}{n_{k}}$ is irrational. My proof is not entirely trivial. It is probable that many other theorems of this kind can be proved. In (4) the condition $n_{k}>k^{1+\varepsilon}$ is essentially best possible.

Once I asked: Assume that $\sum \frac{1}{n_{k}}$ and $\sum \frac{1}{n_{k}-1}$ are both rational. How fast can n_{k} tend to infinity? I was (and am) sure that $n_{k}^{1 / k} \rightarrow \infty$ is possible but $n_{k}^{1 / 2^{k}}$ must tend to 1 . Unfortunately almost nothing is known. David Cantor observed that

$$
\sum_{k=3}^{\infty} \frac{1}{\binom{k}{2}} \text { and } \sum_{k=3}^{\infty} \frac{1}{\binom{k}{2}+1}
$$

are both rational and we do not know any sequence with this property which tends to infinity faster than polynomially. Stolarsky asked the following pretty question: is it true that if $\sum \frac{1}{n_{k}}<\infty$ then there is always an integer $t, t \neq n_{k}$, for which $\sum_{k=1}^{\infty} \frac{1}{n_{k}-t}$ is irrational?

Straus and I proved that the set of points in the plane of the form

$$
x=\sum \frac{1}{n_{k}}, \quad y=\sum \frac{1}{n_{k}+1}
$$

[^0]contains open sets. Probably the analogous result holds for r dimensions. We never published our proof since we did not work out the r-dimensional case.

Straus and I proved [8] that if $\lim \sup n_{k}^{2} / n_{k+1} \leq 1$ and $N_{k}=$ [n_{1}, \ldots, n_{k}] and

$$
\begin{equation*}
\lim \sup \frac{N_{k}}{n_{k+1}}\left(\frac{n_{k}^{2}}{n_{k+1}}-1\right) \leq 0 \tag{5}
\end{equation*}
$$

then $\sum 1 / n_{k}$ is irrational except if $n_{k+1}=n_{k}^{2}-n_{k}+1$ for all $k>k_{0}$. Perhaps our result remains true without the assumption (5).

We defined a sequence $n_{1}<n_{2}<\ldots$ to be an irrationality sequence if, for every sequence of integers $t_{k}, \sum_{k=1}^{\infty} \frac{1}{t_{k} n_{k}}$ is irrational. Observe that $n!$ is not an irrationality sequence since $\sum \frac{1}{(n+2) n!}=1$. We conjectured that and I later proved, [7], that $n_{k}=2^{2^{k}}$ is an irrationality sequence.

It is not clear if the irrationality sequence must increase very rapidly. I have not been able to find an irrationality sequence for which $n_{k}^{1 / 2^{k}} \rightarrow$ 1. Graham and I observed that if n_{k} is an irrationality sequence then $n_{k}^{1 / k} \rightarrow \infty$. We do not know if there is an irrationality sequence $n_{1}<$ $n_{2}<\ldots$ for which $\left(n_{i}, n_{j}\right)=1$ and $\lim \sup n_{k}^{1 / 2^{k}}<\infty$.

Graham and I modified the definition of an irrationality sequence. Let us try to call a sequence $a_{1}<a_{2} \ldots$ an irrationality sequence if, for every $b_{n} / a_{n} \rightarrow 1, \sum_{n=1}^{\infty} \frac{1}{b_{n}}$ is irrational. The trouble with this definition is that we do not know a simple non-trivial irrationality sequence, for example, we cannot prove that $2^{2^{n}}$ is an irrationality sequence of this kind. On the other hand it is not difficult to show that if $\liminf n_{k}^{\frac{1}{2 / 2}}>1$ and $\lim n_{k}^{\frac{1}{2+}}$ does not exist then $\sum_{k=1}^{\infty} \frac{1}{n_{k}}$ is irrational and hence $\left\{n_{k}\right\}$ is an irrationality sequence of this kind; but perhaps it is not an irrationality sequence with our original definition.

Another possibility would be to call $\left\{a_{n}\right\}$ an irrationality sequence if for every $\left|b_{n}\right|<C, \sum_{n=1}^{\infty} \frac{1}{a_{n}+b_{n}}$ is irrational. In this case we proved that $2^{2^{n}}$ is an irrationality sequence but we cannot decide if 2^{n} or $n!$ is an irrationality sequence. Is there an irrationality sequence a_{n} of this type which increases exponentially? It is not hard to show that it cannot increase slower than exponentially. As stated previously, Borwein showed that 2^{n} is an irrationality sequence of this kind.

The following further problems stated in [6] are perhaps interesting: let $n_{1}<n_{2}<\ldots$. Is it then true that $\sum \frac{1}{2^{n} k-1}$ is irrational, or perhaps $\sum \frac{1}{2^{n_{k}-t_{k}}}$ is irrational for every $\left|t_{k}\right|<C$?

Let $n_{k} \rightarrow \infty$ rapidly; then $\sum_{k=1}^{\infty} \frac{1}{n_{k} n_{k+1}}$ is irrational. Probably $\liminf n_{k}^{1 / 2^{k}}>1$ should suffice.

It is not hard to prove that $\sum \frac{1}{2^{n_{k}}}$ is transcendental if $n_{k} / k^{t} \rightarrow \infty$ for every ℓ. Perhaps the weaker condition $\frac{1}{k} n_{k} \rightarrow \infty$ suffices. On the other hand we do not know of any algebraic number for which $\lim \sup \left(n_{k+1}-n_{k}\right)=\infty$, but in fact one would expect that every algebraic number which is irrational has this property. Many of these problems seem hopeless at present, but perhaps one can prove that if $n_{k}>c k^{2}$ then $\sum_{k=1}^{\infty} \frac{1}{2^{n k}}$ is not the root of any quadratic polynomial.

Let $p_{1}<p_{2}<\ldots$ be an infinite sequence of primes. It is a simple exercise to prove that if $a_{1}<a_{2}<\ldots$ is the sequence of integers composed of the p 's then

$$
\sum_{n=1}^{\infty} \frac{1}{\left[a_{1}, \ldots, a_{n}\right]}
$$

is irrational, where $\left[a_{1}, \ldots, a_{n}\right]$ is the least common multiple of a_{1}, \ldots, a_{n}. This result probably remains true if the number of primes p_{i} is finite but of course greater than 1.

We are going to prove the following Theorem. Let $a_{1}<a_{2}<\ldots$ be an infinite sequence of integers. Assume that for every $x>x_{0}$ and some $\varepsilon>0$

$$
\begin{equation*}
A(x)=\sum_{a_{\ell}<x} 1>(1-\log 2+\varepsilon) x . \tag{6}
\end{equation*}
$$

Then

$$
\sum_{n=1}^{\infty} \frac{1}{c(n)}
$$

is irrational, where $c(n)$ is the least common multiple of the integers $a_{i}<n$.

We present the proof of Halberstam who simplified and clarified my somewhat carelessly presented proof.

We need the following simple lemma.
Lemma. Denote by $P(n)$ the greatest prime factor of n; then if $\eta=\eta(\varepsilon)>0$ is sufficiently small we have

$$
t=t(x)=\sum_{\substack{a_{\ell}<x \\ P\left(a_{\ell}\right)>x^{\frac{1}{2}+0}}} 1>\frac{1}{2} \varepsilon x .
$$

The proof follows easily from

$$
\sum_{x^{1 / 2}<p<x} \frac{1}{p}=\log 2+o(1) .
$$

The details are left to the reader.
Let $a_{n_{1}}<\ldots<a_{n_{1}} \leq x, t>\frac{1}{2} \varepsilon x$, be the integers for which $P\left(a_{n_{i}}\right)>x^{\frac{1}{2}+\eta}$. By the Lemma these $a^{\prime} s$ exist. Let now p be a prime greater than $x^{\frac{1}{2}+\eta}$. There clearly are at most $\frac{x}{p} \leq x^{\frac{1}{2}-\eta}$ of the $a_{n_{i}}$ which are multiples of p and since an integer not exceeding x is divisible by at most one of these primes there are at least $\frac{1}{2} \varepsilon x^{\frac{1}{2}(1+\eta)}$ distinct primes p_{i} for which there is an integer $a_{n_{i}}$ satisfying $P\left(a_{n_{i}}\right)=p_{i}>x^{\frac{1}{2}+\eta}$ and we can assume that $a_{n_{i}}$ is chosen minimally.

Denote now by I_{r} the interval

$$
\left(r x^{\frac{1}{2}},(r+1) x^{\frac{1}{2}}\right), \quad 1 \leq r \leq x^{\frac{1}{2}} .
$$

There clearly is at least one r, say r_{0}, for which there are at least $u>$ $\frac{1}{2} \varepsilon x^{\frac{\pi}{2}}$ integers $a_{n_{i}}$ in $I_{r_{0}}$ each of which have a prime factor $p_{i}>x^{\frac{1}{2}+\eta}$ and for distinct i 's the p_{i} 's are distinct. Denote these a 's by $r_{0} x^{\frac{1}{2}}<b_{1}<$ $\ldots<b_{u}<\left(r_{0}+1\right) x^{\frac{1}{2}}$.

Now we are ready to prove our Theorem. Assume that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{c(n)}=\ell_{1} / \ell_{2}, \quad\left(\ell_{1}, \ell_{2}\right)=1 \tag{7}
\end{equation*}
$$

Multiply both sides by $\ell_{2} c\left(b_{1}-1\right)$. We immediately obtain from (7)

$$
\begin{equation*}
\ell_{2} c\left(b_{1}-1\right) \sum_{n \geq b_{1}} \frac{1}{c(n)} \geq 1 . \tag{8}
\end{equation*}
$$

Now by the definition of $b_{1}, b_{1} \equiv 0(\bmod p)$ for some $p>x^{\frac{1}{2}+\eta}$ and b_{1} is the smallest $a \equiv 0(\bmod p)$. Thus

$$
\begin{equation*}
\frac{c\left(b_{1}-1\right)}{c\left(b_{1}\right)} \leq \frac{1}{p} \leq \frac{1}{x^{\frac{1}{2}+\eta}} . \tag{9}
\end{equation*}
$$

Write now (8) in the form

$$
\begin{equation*}
\ell_{2} c\left(b_{1}-1\right)\left(\Sigma_{1}+\Sigma_{2}\right) \geq 1, \tag{10}
\end{equation*}
$$

where we place in Σ_{1} the integers n in $I_{r_{0}}$; each such n satisfies $n \geq b_{1}$ and there are at most $x^{\frac{1}{2}}+1$ such n 's. Thus

$$
\begin{equation*}
c\left(b_{1}-1\right) \Sigma_{1}<\frac{x^{\frac{1}{2}}+1}{x^{\frac{1}{2}+\eta}}<2 x^{-\eta} . \tag{11}
\end{equation*}
$$

Now we have to estimate $c\left(b_{1}-1\right) \Sigma_{2}$. If n is in Σ_{2} we can of course assume $n>\left(r_{0}+1\right) x^{1 / 2}$, i.e. n lies beyond $I_{r_{0}}$. But since $b_{1}, b_{2}, \ldots, b_{u}$ are in $I_{r_{0}}$ and each is divisible by a distinct prime $>x^{\frac{1}{2}+\eta}$, we have (for large x)

$$
\frac{c\left(b_{1}-1\right)}{c(n)}<\left(\frac{1}{x^{1 / 2}}\right)^{n}<\left(\frac{1}{x^{1 / 2}}\right)^{\frac{1}{2} \in x^{n / 2}}<x^{-10} .
$$

Thus we evidently have

$$
\begin{equation*}
c\left(b_{1}-1\right) \sum_{\left(r_{0}+1\right) x^{1 / 2}<n \leq x^{2}} \frac{1}{c(n)}<\frac{x^{2}}{x^{10}}=x^{-8} . \tag{12}
\end{equation*}
$$

Finally, suppose $n>x^{2}$. Write

$$
\begin{equation*}
\sum_{n>x^{2}} \frac{1}{c(n)}=\sum_{r=1}^{\infty} \sum_{z^{2 r}<n \leq x^{r} r+1} \frac{1}{c(n)} \tag{13}
\end{equation*}
$$

We obtain from our Lemma and by the argument we just used that

$$
\begin{equation*}
c\left(\left[y^{1 / 2}\right]\right) \sum_{y<n \leq y^{2}} \frac{1}{c(n)}<y^{-8} . \tag{14}
\end{equation*}
$$

Thus from (13) and (14) we obtain

$$
\begin{equation*}
\sum_{n \geq x^{2}} \frac{c\left(b_{1}-1\right)}{c(n)}<\sum_{r=1}^{\infty}\left(x^{2^{r}}\right)^{-8}<x^{-8} . \tag{15}
\end{equation*}
$$

Then (11), (12) and (15) clearly contradict (10) which completes the proof of our Theorem. It can be shown without much difficulty that the Theorem does not remain true if $A(x)<x(1-\log 2+\varepsilon)$.

References

[1] P. Erdős, On arithmetical properties of Lambert series, J. Indian Math. Soc. 12 (1948), 63-66.
[2] P. Erdös and M. Kac, Amer. Math. Monthly, 61 (1954) Problem 4518, p. 264.
[3] P. Erdös and E. Straus, Some number theoretic results, Pacific J. of Math. 36 (1971), 635-646 and On the irrationality of certain series ibid 55 (1974), 85-92.
[4] P. Erdös, Sur certaines series a valeur irrationnelle, Enseignement Math. 4 (1958), 93-100.
[5] P. Erdős, Sur l'irrationalité d'une certaine série, C. R. Acad. Sci. Paris, Sér I 292 (1981), 765-768.
[6] P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographie No. 98 de L'Enseignement Mathématique Genéve 1980 (imp Kundig).
[7] P. Erdös, Some problems and results on the irrationality of the sum of infinite series, Journal of Math. Sciences 10 (1975), 1-7.
[8] P. Erdös and E. Straus, On the irrationality of certain Ahmes series, J. Indian Math. Soc. 27 (1963), 129-133.

For some further results on irrationality see P. Erdős, On the irrationality of certain series, Indagationes Math. 19 (1957), 212-219 and Math. Student 36 (1968), 222-226.

[^0]: \dagger A simple proof of this statement was communicated to me by Cusick (June 1987). The question for all n remains open.

