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Let A be an asymptotic basis of order h in the sense of additive number theory,
and let f(n) denote the maximum number of pairwise disjoint representations of n
in the form n = a,, + a i, + - - - + a in , where a i e A and a ;, ~< a,Z ~< . . . <-a i, Let t _> 2 .
If f(n) _> c log n for c sufficiently large, then A can be written in the form A=
A t u . . . a A„ where A; n A, #0 for 1 < i < j < t and Aj is an asumptotic basis of
order h for j = 1, . . ., t. If lim„ , x f(n)/log n = oc, then A = UJI I Aj , where
A i n A ; = 0 for i j and each A ; is an asymptotic basis of order h . These results
are obtained by means of some purely combinatorial theorems . Related open
problems are also discussed .
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In this paper we shall prove some Ramsay-like theorems about
partitions of finite subsets of a countably infinite set, and then apply these
results to Waring's problem and other classical topics in additive number
theory .

Here is an example of the kind of results we obtain. Let A be an infinite
set, and let h >, 2 . For each n > 1, let S(n) be a collection of f(n) pairwise
disjoint subsets of A of cardinality at most h . If f(n) tends to infinity suf-
ficiently fast, for example, if f(n) >, c,, log n for n > n o , then there is a par-
tition of A into two disjoint sets A = A I v A z such that for every n > n I
there exist sets U 1 , U2 ES(n) with the property that U, ~A r and Uz A z .
This will be shown to have the following arithmetical consequence : Let
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k > 2 . Then there is a partition of the set of positive kth powers
Ink I n > 1 } = A, u A Z such that Waring's problem holds independently for
both A, and A z . That is, there is a number G=G(k, A,, A 2 ) such that for
i = 1, 2 every sufficiently large integer is the sum of G kth powers belonging
to A i .

The paper is divided into three parts. Part 1 contains combinatorial
results. Part 2 applies these results to number theory. Part 3 discusses some
related unsolved problems .

1 . COMBINATORIAL RESULTS

Let I
U

denote the cardinality of the set U. Let A be a countably infinite
set, and let h > 1 be an integer. Denote by [A]" the collection of all subsets
U A with I U1 = h and by [A ] s" the collection of all subsets U - A with
IUJ<h .

The probability of an event E is denoted prob(E) .

THEOREM L Let A be a countably infinite set . Let h > 1 and t > 2 be
integers. For each n > 1, let

satisfy the following conditions :

(i) If U, V c S(n) and U V, then U n V = 0,
(ü) There are constants c and n o such that

and

c>

S(n) -- [A] ' h

1
log(t"/(t "- 1))

f(n) = IS(n)I > c log n

for all n > n o . Then there exists a partition of A into t disjoint sets A,, . . ., A t
such that

(iii) S(n) n [Aj] ," 0 for j = 1, . . ., t and all n > n, .

Proof. Let ~ = t"/(t" - 1) . Then R > 1 . By condition (ü), there exists
6>0 such that c log .i = 1 +6 .

We construct a probability measure on the space of all partitions

A=A,u . . .uA,



by setting

for all a c A and j = 1, . . ., t.
Let n > n o . If U E S(n), then I U1 = h, < h and prob(U Aj ) = t- "' . It

follows that

and so

Therefore,

prob(S(n) n [A ;] -<" _ 0 for some j =1, . . ., t) < n,
t
'15*

Since the series ~, no tl(n"') converges, the Borel-Cantelli lemma implies
that for almost all partitions A =A, v . . . v A t there exists n, such that
condition (iii) is satisfied for j = 1, . . ., t and all n > n, . This proves the
theorem .

THEOREM 2 . Let A be a countably infinite set. Let h > 1 . For each n > 1,
let

for all n > n, (k) .
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1
pro (a c- Aj )_-

t

prob(U A,)=1- t1
<1 t''

prob(S(n) n [Aj] `" _ ~) C 71n)

	

,clogn = n ~1 a •

S(n) -- [A]'"

satisfy the following conditions :

(i) If U, VeS(n) and U V, then UnV=0,
(ü) Define f(n) =I S(n)1 . Then

lim f(n)
= co .

n ~ log n

Then there exists a partition A = Uk , Ak such that A ; n Aj 0 for
1 i < j < oo, and for each k there is an integer n, (k) such that

S(n)n [Ak] `'" o o
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by setting

Define

4=2 hk/ (2 hk
- 1 ) .

and

f(n)log4>(2+6)logn

for all n 3 n o(k) . Then

Proof. Define a probability measure on the space of all partitions

y_ Y prob(Ek,n)
k=In= no(k)

A = U A k
k=1

1
prob(a c- Aj =F

for all a e A . Let Ek ,n denote the set of all partitions A = U 1 Aj such that
S(n) n [A k] <` = U. The probability of the event Ek,n is

1

	

~(")
prob(Ek,n)~~ 1- ~hU .

Fix 8 > 0 . Since f(n)/log n tends to infinity, there exist integers n o(k) such
that

1 < n o(1) < n o (2) < . . - < n o(k) < . . .

1<

Y
~k j(n)

k=1 n=no(k)

Y

	

~k (2+ö)logn/log~,k
k=1 n=no(k)

- Y- Y n 2+ó
k=1 n=no(k)

1

1+8k=1 (n,(k)-l)1+ó

1 ~~ 1
\ 1+a k- 1 k l+ó

< 00 .

1
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The Borel-Cantelli implies that for almost all partitions A = U,7= , Ak there
exists a sequence of integers {n,(k)}k , such that

S(n) n [Ak] , h 96 0
for all k > 1 and n > n, (k). This concludes the proof .

2. APPLICATIONS TO NUMBER THEORY

The set A of integers is an asymptotic basis of order h if every sufficiently
large integer can be represented as a sum of h (not necessarily distinct)
elements of A . The classical theorems in additive number theory assert that
special sequences of integers are asymptotic bases . Lagrange's theorem, for
example, states that the squares form an asymptotic basis of order 4, and
Waring's problem is the assertion that the set of positive kth powers is an
asymptotic basis of some order G(k) . We shall prove that if A is an
asymptotic basis of order h and if every large integer has sufficiently many
representations as a sum of h elements of A, then the basis A can be
decomposed into the union of a finite or infinite number of pairwise dis-
joint asymptotic bases of order h .

Let A be an asymptotic basis of order h, and let

n=a;,+ • • • + a,,=a„+ • • • + ash

be two representations of n as a sum of h elements of A . These represen-
tations are disjoint if

Iai,, . . .,a„}n{aj, . ..,aj,I=0 .

Let U= {a,,, . . ., a,,}. Since the integers a ;k are not necessarily distinct, it
follows that I U1 = h, , where 1 < h, < h .

In general, let

	

_ {F,} ;E ., be a family of functions Fj =Fj(x,, . . ., xh(i ) ) in
h(j)<,h variables, and let A be a countable set in the domain of 9. Two
representations

F a,, . . ., a h(j) -Fk a,, . . ., ah(k)

are disjoint if {a,, . . ., ahv)} n {al, . . ., ah(k)I - 0 •

THEOREM 3 . Let A be an asymptotic basis of order 2, and let f(n) denote
the number of representations of n in the form n =a ;, +a;z where a„ , ai, e A
and a„ S a ,z . Let t > 2. If c > log - ' (t2l(t 2 - 1)) and if f(n) > c log n for all
n > no, then A can be partitioned into t pairwise disjoint sets, each of which is
an asymptotic basis of order 2 .
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Proof. For n >, 1, let S(n) consist of all sets {a il , a,,} such that
a il + aQ =n and a il , a,, c A . Then I S(n)l = f(n) and the sets f a il , a iz } are
pairwise disjoint. Note that if n is even and n/2 E A, then {n/2} E S(n) . If
U E S(n) and U { n/2 }, then I U = 2 . Applying Theorem 1 in the case
h = 2, we conclude that there is a partition A = A, u . . . u A, such that

S(n) n[A] ,2 =A0

for j = l, . . ., t and all n > n, . If U= {a il , aiz } E S(n) n [A;] 2, then n =
a„ + are and so Aj is an asymptotic basis of order 2 for all j = 1, . . ., t. This
proves the theorem.

THEOREM 4 . Let A be an asymptotic basis oforder h, and let f(n) denote
the cardinality of a maximal set ofpairwise disjoint representations of n as a
sum of h elements of A . Let t >, 2 . If f(n) > c log n for some constant
c > log-'(t`'/(t`' - 1)) and all n > na , then A can be partitioned into the
disjoint union of t sets, each of which is an asymptotic basis of order h .

Proof. This follows from Theorem 1, exactly as in the proof of
Theorem 3 .

THEOREM 5 . Let A be an asymptotic basis of order h, and let f(n) denote
the cardinality of a maximal set ofpairwise disjoint representations of n as a
sum ofh elements of A . Iflimn y . f(n)/log n = oo, then A can be partitioned
into a countable union of pairwise disjoint sets, each of which is also an
asymptotic basis of order h .

Proof. This follows immediately from Theorem 2 .

THEOREM 6 . Let k > 2 and let A = {n k }k , . There exists an integer so(k)
such that for all s > s a(k) there is a partition A = lJ ] ° , A~ such that each set
Aj is an asymptotic basis of order s .

Proof. Let dks(n) denote the number of representations in some
maximal collection of pairwise disjoint representations of n as a sum of
s k-th powers. Nathanson [5, p. 304] proved that there exists an s o(k) such
that for all s > so (k) there is a constant c > 0 such that dks(n) > cn'Ik for all
n > 1 . Thus, dks(n)/log n tends to infinity, and so the result follows
immediately from Theorem 2 with f(n) = dks(n) .

Lagrange proved that every positive integer is the sum of four squares,
but it is easy to see that it is not possible to partition the squares into even
two disjoint sets, each of which is an asymptotic basis of order 4 . Let r 4 (n)
denote the number of solutions in integers of the equation n =
a2 + b2 + c2 + d2. Then r4(n) = 8 E„ in m, where the summation runs over all
positive divisors of n that are not divisible by 4 . In particular, if k ~> 1, then
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r4(22k+') = 24 and the only solutions of 22k+' = a 2 + b 2 + c 2 + d' are
permutations of the representation

22k+' =(±2 k ) 2 + (±2 k ) 2 + 02 + 02 .

If S(n) consists of all sets U= {a 2, b 2, c 2, d 2 } such that n=
a2 + b 2 + c 2 + d2 , then S(22k+ I) consists of the single set {0, 4k } and
f(2 2k+1 )=JS(2 2k+ ')I=t for all k>1 . It follows that if {n 2 1n>0}=
A, v Az and A, n Az = 0, then not both A, and A z are asymptotic bases
of order 4.

If we consider only numbers not divisible by 4, however, then it is
possible to establish a positive result .

THEOREM 7 . Let T = { n >,O Inn 4 0 (mod 4)1. Then there is a partition
{n 2 I n >O} _ U , A, such that for each j there is an integer n, such that if
n c T and n > n_,, then n is a sum offour elements of Aj .

Proof. For n e T, let f(n) denote the number of representations in some
maximal collection of pairwise disjoint representations of n as a sum of four
squares. Erdős and Nathanson [2] proved that for every e > 0 there exists
a constant c = c(e) > 0 such that f(n) > cn (1 /2)- E for all n c T. The result
follows immediately from Theorem 2 .

THEOREM 8 . Let Fj = Fj(x,, . . ., x h(i) ) be a function in h(j) < h variables,
and let F _ {Fj } j , ., . Let A be a set of integers . Let (A) be the set of all
numbers of the form Fj(a,, . . ., a h(i) ), where Fj E F and a,, . . ., a h(j) E A . Let
W=}w„} , si~F(A). Let f(n) denote the maximum number of pairwise
disjoint representation of W n in the form w„ =Fj(a,, . . ., a h(j) ) . Iff(n) > c log n
for some c > log - I(thl(th- 1)) and all n > n o , then there is a disjoint par-
tition A = U j , Aj such that

C ~Wn n=ni - ~( Aj)

for some integer n, and all j = l, . . ., t .
If lim„ - . f(n)/log n = oc, then there is a disjoint partition A = UJ' , Ai

and integers n,(j) such that
°O

	

_{Wn ^=^IUI
C (A,)

for all j = l, 2, . . . .

Proof. This follows immediately from Theorems 1 and 2 .

3. OPEN PROBLEMS

l . In Theorem I the condition that f(n) > c log n is best possible in the
following sense. In the case A = 11, 2, 3, . . . } and h = t = 2, R . L . Graham
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(personal communication) has constructed for each n a collection S(n) of
pairs of integers such that f(n)_ IS(n)I > c log n for some c > 0 and all
n .> 1, but there is no partition A =A, u A 2 such that S(n) n [A,] _<2

0

for i = 1 and i = 2 and all n > n, . Let c(h, t) denote the infimum of all real
numbers c such that the conclusion of Theorem 1 holds whenever
f(n) > c log n. Calculate c(h, t) .

2 . Let A be an asymptotic basis of order 2 and let f(n) denote the num-
ber of representations of n in the form n = a ; + a,, where a,, aj c A and
a ; <, aj . According to Theorem 3, if f(n) ->- c log n for some c > log - '(4/3)
and all n > n o , then A can be partitioned into the disjoint union of two
asymptotic bases of order 2. Can the condition that f(n) > c log n be
weakened? In particular, if we assume only that lim„ - x f (n) = co, does
A = A, u A 2 , where A, n A Z = 0 and A, and A 2 are both asymptotic
bases of order 2?

3 . An asymptotic basis A of order h is minimal if no proper subset of A
is an asymptotic basis of order h . Hdrtter [3] and Nathanson [4] proved
that there exist asymptotic bases that do not contain any minimal
asymptotic bases . On the other hand, Erdös and Nathanson [1] proved
that if A is an asymptotic basis of order 2 such that f(n) >, c log n for some
c > log - '(4/3) and all n >, n o , then A contains a minimal asymptotic basis
of order 2 . The proof is similar to the proof of Theorem 1, but seems to
work only in the case h = 2 . It is not known whether an asymptotic basis A
of order h > 2 for which f (n) ~> c log n for some constant c sufficiently large
must necessarily contain a minimal asymptotic basis of order h. An old
problem of Erdös and Nathanson [ 1 ] is the following : If A is an
asymptotic basis of order h such that lim, , f (n) _ cc, then does A
contain a minimal asymptotic basis of order h? This is open even in the
case h = 2 .

4 . It is not clear if there is a relationship between asymptotic bases that
contain minimal asymptotic bases and asymptotic bases that can be
decomposed into the disjoint union of two asymptotic bases . For example,
let A, and A Z be asymptotic bases of order 2 such that A, n A Z = 0. Let
A = A, u A 2 . Does A contain a minimal asymptotic basis of order 2?

5 . Under the conditions of Theorem 1, let f(n) > c' log n for some
sufficiently large constant c' . Then there exists 6 > 0 such that

I S(n) n [Aj] s nl > 6 log n

for j = l, . . ., t and n >, n, . The proof is essentially the same as the proof of
Theorem 1 . Estimate the size of the constant c' .



PARTITIONS OF ADDITIVE BASES

	

9

REFERENCES

1. P. ERDŐS AND M . B . NATHANsON, Systems of distinct representatives and minimal bases in
additive number theory, in "Number Theory, Carbondale 1979" (M . B . Nathanson, Ed.),
Vol. 751, pp . 89-107, Springer-Verlag, Heidelberg, 1979 .

2. P . ERDŐS AND M. B . NATHANSON, Lagrange's theorem and thin subsequences of squares, in
"Contributions to Probability" (J. Gani and V . K. Rohatgi, Eds .), pp . 3-9, Academic Press,
New York, 1981 .

3 . E . He .RTTER, Ein Beitrag zur Theorie der Minimalbasen, J . Reine Angew. Math. 196 (1956),
170-204.

4 . M . B. NATHANsoN, Mimimal bases and maximal nonbases in additive number theory,
J. Number Theory 6 (1974), 324-333 .

5 . M . B. NATHANSON, Waring's problem for sets of density zero, in "Number Theory,
Philadelphia 1980" (M . L Knopp, Ed .), Vol. 899, pp . 301-310, Springer-Verlag, Heidelberg,
1981 .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

