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I wrote many papers with this and similar titles . In my lecture I stated several
of my old solved and unsolved problems some of which have already been
published elsewhere . To avoid overlap as much as possible, I state here only
relatively new problems .

First I state two recent problems of Nesetril and myself .
1 . Let G be a graph each vertex of which has degree not exceeding n . It is true

that if our G has more than Sn2/4 edges then G contains two strongly
independent edges? (i .e . two edges, which are vertex disjoint and for which the
subgraph of G induced by the vertices of these two edges contains only these two
edges) .

Very recently Fan Chung and Trotter and independently and simultaneously
Gyárfás and Tuza proved this conjecture . The proofs are quite complicated. It is
easy to see that the result is best possible .

We also formulated the following much more difficult and interesting Vizing
type conjecture : Let G be a graph each vertex of which has degree not exceeding
n . Is it then true that G is the union of at most Sn2/4 sets of strongly independent
edges? If this conjecture fails one can try to determine the smallest f (n) so that
every G each vertex of which has degree --n is the union of f (n) sets of strongly
independent edges . f (n) < 2n' is easy .

One could perhaps try to determine the smallest integer h,(n) so that every G
of h,(n) edges each vertex of which has degree --n contains two edges so that the
shortest path joining these edges has length %r . The order of magnitude of h,(n)
is easily seen to be n"' but the exact value of h,(n) is unknown . This problem
seems to be interesting only if there is a nice expression for h,(n) .

Our second problem states as follows: Let G(n) be a graph of n vertices
x,	x„. A subset x ;,, . . . , x,, is said to be a minimal cut if the omission of
these vertices disconnects G(n), but no subset xi ,, . . . , x i , disconnects G(n) .
Denote by c(n) the maximal number of minimal cuts a G(n) can have. Seymour
observed c(3m + 2) -- 3'. To see this let G(3m + 2) have the vertices x, y and
there be m independent paths of length 4 joining x and y . Perhaps c(3m + 2) _
3', we could not even prove that c(n) I /n a < 2.
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2. Gallai conjectured more than a year ago that if G(n) is a graph which
contains no wheel (i .e . a cycle and a vertex joined to all the vertices of our cycle)
then G(n) contains at most $n2 triangles . It is easy to see that this conjecture if
true is best possible . Let JAI = zn, JBI _ [2(n + 1)], join every vertex of A to every
vertex of B and add in B a matching. It is well known and not hard to see that
every graph of 'án2 + Qn + 1 edges contains a wheel (i .e . our graph is the largest
graph which has no wheel) . Unfortunately this does not seem to help with
Gallai's conjecture .

3 . Recently Gallai and I posed the following problem : Denote by h(n) the
smallest integer so that every G(n) has a set of --h(n) vertices x,, . . . , x t , for
which every clique of G(n) contains at least one of these x;'s . It is easy to see that
h(n) -- n - Vn- . We conjecture that h(n) equals to the smallest integer for which
every graph of n vertices which has no triangles has a set of at least n - h(n)
independent vertices . To convince the reader that our conjecture is not
unreasonable consider the set of all graphs on n vertices which have no triangle .
Such a graph must have at least n - h(n) independent vertices and there is such a
graph G, (n) which has no triangle and which has exactly n -h(n) independent
vertices . Thus to represent all cliques (i .e . in this case all edges) of our graph we
need h(n) vertices (namely the complement of our largest independent set) . Thus
it was perhaps not unreasonble to assume that h(n) vertices will always suffice to
represent all cliques of our graph . We made no progress with this conjecture
which is perhaps completely wrongheaded . We could not make any progress even
if we assumed that our G(n) has no K(4) . In this case we only would have to
represent all K(3)'s of G(n) and all the edges not contained in a K(3) .

Gallai further conjectured that if G(n) is a chordal graph (i .e . all cycles Cn ,
n > 3 have a diagonal) then all cliques can be represented by [zn] vertices . This
conjecture was indeed proved by Aigner, Andreae and Tuza .

4 . The problem of Gallai and myself naturally leads to the problem of Ramsey
numbers . Many papers on these questions were published and to avoid repetition
I state here only a few of them and will give an admittedly incomplete list of
references .
Denote by r(u, v) the smallest integer so that every graph on r(u, v) vertices

either contains a complete graph of u vertices or an independent set of v vertices .
It is more usual to use the following (equivalent) definition : r(u, v) is the smallest
integer so that if we color the edges of K(r(u, v)) (i .e . the complete graph of
r(u, v) vertices) by two colors I and II then there is either a K(u) all whose edges
have color I or a K(v) all whose edges have color II . r(n, n) is the diagonal
Ramsey number, it is the smallest integer for which the every complete graph of
r(n, n) vertices whose edges are coloured by two colors always contains a
monochromatic K(n) . r(3, 3) = 6, r(4, 4) = 18 (this is an old result of Greenwood



I proved the lower bound in (1) by probabilistic methods . The value of the
constant was improved by Joel Spencer. The upper bound in (1) was recently
obtained by Rödl and is not yet published . I offer 100 dollars for a proof that

lim r(n, n) "" = c

	

(2)n-~x

exists and I offer 10 000 dollars for a disproof. I am of course sure that (2) holds . I
offer 250 dollars for the determination of c . NF2 , c < 4 follows from (1), perhaps
c = 2? Let us now give a very short discussion of the non-diagonal Ramsey
numbers. We have

c,n2
< r(3, n) <

C2n2

	

(3)
(log n) 2

	

log n

The lower bound in (3) is due to me, the upper bound is due to Ajtai, Komlós
and Szemerédi, who improved by a factor log log n the previous result of Graver
and Yackel . It is perhaps not hopeless to try to get an asymptotic formula for
r(3, n) .

It would be reasonable to guess that for every fixed k and e > 0 if n > n o (8, k)

r(k, n) > nk-i-E

	

(4)

but the proof of (4) presented so far unsurmountable difficulties, even for k = 4 .
At first I thought that the difficulties are only technical and the probability
method will give (4), but perhaps I was too optimistic .
The best constructive lower bound for r(n, n) is due to Peter Frankl, who

proved

r(n, n) > exp	
clog
og n) 2

log log n

I offer 100 dollars for a constructive proof of r(n, n) > (1 + c)n . I am afraid that
there are easier methods of earning 100 dollars .

Several of us tried to prove simple inequalities between Ramsey numbers. We
all failed so far . The main difficulty is perhaps the lack of constructive methods .
Here is a sample which shows our ignorance :

Is it true that

r(n + 1, n) - r(n, n) > cn2 .

	

(5)

`Clearly' (?) .

lim r(n + 1, n)/r(n, n) = C~ where r(n, n) 11n C .

	

(6)
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and Gleason) and r(5, 5) is unknown . The best current bounds are

c,n2n/2 < r(n, n) <
(2n

)/(log n)£. (1)
n



(6) seems quite hopeless at present . V.T . Sós and I failed to prove

r(3, n + 1) - r(3, n)
--->0 and r(3, n + T) - r(3, n)- -.

	

(7)
n

The second inequality in (7) should be perhaps easier than the first . Simonovits
and I tried unsuccessfully to prove that for every k , 4

lim r(k + 1, n)/r(k, n) _

(4) is easy for k = 3 .
I just mention one of two problems on generalized Ramsey numbers . r(n ; Ifi) is

the smallest integer t, so that if we color the edges of K(t) by two colors then
either color I contains a K(n) or color II contains G . It is particularly frustrating
that (C4 is a cycle of length four)

lim r(n, K(3))/r(n, C4) _ 00

has not yet been proved . (9) is an old conjecture of mine . I in fact conjectured
that the following much sharper (and much more doubtful) result holds :

r(n ; C4 ) < n2-E for some e > 0 and n > nJE) .

Szemerédi proved (unpublished)

r(n ; C 4 ) < cn2 /(log n)' .

	

(10)

(10) in view of (3) `nearly' proves (9) . To end this chapter I state an old and
nearly forgotten conjecture of Bondy and myself : Let n be odd . Color the edge of
a K(4n - 3) by three colors . Then there always is a monochromatic C,, . The
analogous conjecture for two colors was proved by V . Rosta and Faudree and
Schelp .

Several excellent survey papers on Ramsey numbers were written by Burr and
Rosta, see also a forthcoming book on this subject by Burr, Faudree and Schelp .
Faudree, Rousseau, Schelp and I have many papers on this subject .
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5 . During my last visit to Memphis State University Faudreee, Rousseau,
Schelp and I came across the following nice problem which to our surprise is

(8)

(9)
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perhaps difficult . (The problem came up in connection of our work on generalised
Ramsey theory, but as such is quite independent of it .) Is it true that there is an
absolute constant c > 0 so that every If(n ; 2n - 1) has a subgraph G(m),
m < n(1- c) so that every vertex of G(m) has degree ,3? Faudree could prove
this with m < n - cVn- instead of n(1 - c) . C,-, and an nth vertex joined to every
vertex of our C„-, shows that 2n - 1 cannot be replaced by 2n - 2 .

Pósa and I proved that every W(n ; n + k) contains a cycle of size not exceeding
c,n log klk and apart from the value of c, this is best possible . It might be of
some interest to try to obtain the exact size n • g(k) of this cycle for small values
of k, for example g(l) =,2,, g(5) = 3 . I believe we determined g(k) for k , 5, for
larger values of k the exact determination of g(k) gets more and more laborious
and tricky . A cycle can of course be considered as a subgraph of degree 2, but
perhaps our old result with Pósa throws no light on our conjecture, since it is not
difficult to prove that for every c, there is a c z so that there is a (fi(n ; c, n) for
which every subgraph (fi(m) each vertex of which has degree >3 has more than
c,n vertices . The existence of a such a graph follows easily by the probability
method, but a direct construction will perhaps also be easy . We have not
determined the exact dependence of c z on c, .

Reference
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6. Several years ago Sauer and I asked the following question : Let fk (n) be the
smallest integer for which every G(n ; fk (n)) contains a regular subgraph of degree
k. Trivially fz (n) = n, but we could not get any non-trivial results for fk(n) for
k = 3 . In particular we could not prove f3(n)/n -3 x and f3(n) < n "' . A few
months ago Pyber proved

fk (n) < c,k 2n log n

	

(1)

Pyber, Rödl and Szemerédi proved

cn log log n < f3 (n) .

	

(1')

Their proof of both the upper and lower bound of (1) is ingenious . It would be
nice to improve (1) further and get an asymptotic formula for f3(n) and generally,
fk (n) .

Szemerédi once asked : Denote by Fk(n) the smallest integer so that every
1v(n ; Fk (n)) contains an induced subgraph of degree k. How large is Fk (n)? Again
it is trivial that F2(n) = n . I observed that F3(n) < cn 3 since it is easy to see that
every Ifi(n ; cn) contains either a K(4) or an induced K(3, 3) . It would be nice to
improve this if possible .
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7 . Now I discuss some problems on extremal graph theory . Let G be any
graph, denote by T(n ; G) the Turán number of G, i .e . the smallest integer so
that every Ifi(n ; T(n ; G)) contains G as a subgraph . Many papers on this subject
have been published recently (some by myself) . Bollobás published an excellent
book on this subject and Simonovits an excellent survey paper ; thus to avoid
repetitions I will try to mention as much as possible only new problems or
questions which have been neglected .
In a paper Simonovits and I investigated the following question : Let

Ifi(n ; T(n ; G) + t) be a graph . How many copies of G must our graph contain?
For large e we get very satisfactory results but we had little success for small
values of ,°. In particular for which graphs G it is true that every W(n ; T(n ; Ifi))
contains two (or more generally) many copies of G. If W is a triangle then
Rademacher, almost immediately after he heard of the result of Turán
(T(n ; K(3)) _ [4n2] + 1), proved that every G(n ; [4n2] + 1) contains at least [zn]
triangles and this result is best possible . This result was extended to G(n ; [4n2] +
f) first for small values of y by me and later to a much larger range by Bollobás,
Lovász and Simonovits . On the other hand Simonovits and I conjectured that
G(n; T(n ; C4 )) contains c,n' C 4 's . If true this result is best possible, but we could
not even prove that it contains 2 C4's . Can one characterise those graphs G for
which every GI (n ; T(n ; G)) must necessarily contain at least two subgraphs
isomorphic to G?
Here I would like to insert one problem on hypergraphs which perhaps will

lead to interesting problems. I only state the simplest case . A classical problem of
Turán states : Let T (3) (n ; K (3) (4)) be the smallest integer so that every triple
system on n elements and T (3) (n ; K(3) (4)) triples contains a K(3) (4), i .e . a set of 4
elements all whose triples are in our system . The determination of T (3) (n ; K (3) (4))
seems to be very difficult . Is it true that such a triple system must contain at least
two (and perhaps in fact cn) K(3) (4)'s . Observe that it is easy to see that every
G(n ; [4n2] + 1) contains an edge e and c 1 n other vertices X3 , . . . , X, so that all
these vertices form a triangle with e in our W(n ; [4n'] + 1) . Bollobás and I
conjectured and Edwards proved that c I = 6 is best possible . Is it true that every
3-uniform hypergraph (or triple system) G(3) (n ; T (3)(n ; K (3) (4)) contains an edge
e and c,n vertices x	x, so that e and x ; are a K(3)(4) in our hypergraph? This
problem is of course open even for t = 2 . It follows easily from our results with
Simonovits that a G (3) (n ; (1 + E)T(n ; K(3) (4))) contains such a system .
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8. Now I return to ordinary graphs, i .e . (r = 2) . The results of Stone,
Simonovits and myself show that the most interesting open problems are if G is
bipartite . I first state some of our favourite conjectures with Simonovits .

Is it true that for every bipartite G there is a rational a, = a(G,) , a < 2 for
which

lim T(n ; G)/n'= c(G), 0 < c(G) < (1)

exists? Is it true that for every rational a, 1 , a < 2 there is a bipartite G for
which the limit (1) exists? At present these conjectures which are about 20 years
old are beyond our reach, and in fact we have no real evidence for their truth .
We have no idea of the possible value of c(G), it would perhaps be reasonable to
assume that c(G) is algebraic .
Let G be bipartite. Denote by K(G) = r the largest integer for which G has an

induced subgraph G' each vertex of which has degree >r. We conjectured that
then

(2)

Thus in particular if r = 2, i .e . if G has no induced subgraph each vertex of
which has degree >2, then

T(n ; G) < cn'2 .

	

(3)

On the other hand if G has an induced subgraph each vertex of which has
degree -_3 then our conjecture would imply a(G) > z . There is some (admittedly
inadequate) evidence for our conjectures . Let G be the graph defined by the
edges of the three-dimensional cube . We proved

T(n ; G) < cn ',

	

(4)

and we believe a(16) _ $, but unfortunately we could not even prove a(%) > z . In
fact even T(n ; G)/n'2 00 is open . We proved that T(n ; G - e) < cn~ . Further we
have

T(n ; K(r, r) - e) < cn 2- ` ~'-'~

A nice test case of our conjecture is the following : Let G, be a graph of
1 + t + (z) vertices and t + t(t - 1) edges defined as follows :

The vertices of G, are x ; y,, yz , . . . , y„ z	z(z ) . x is joined to all the y's
and each z is joined to two of the y's so that every pair (y„ y ) is joined to exactly
one z. Our conjecture (3) would imply

T(n ; G,) < c,0 .

	

(5)
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For t = 3 (5) is easy and we have no proof for t -- 4 . Omit X from Gr then we
obtain Gt . G3 is C6 and we know a(G3) - 3 . Faudree and Simonovits proved
a(W4 ) < 2 . Perhaps for every t Unfortunately their ingenious proof
only works for t = 4 .

Let now G„ 1 --i , r be a family of graphs . Define T(n ; ~,, . . . , (fir ) as the
smallest integer for which every `fi(n ; Tn (1i	%r)) contains one of the G,'s as
a subgraph. Simonovits and I asked if there is a system Gi , . . . , Gr for which

hm T(n, G l , . . . , Gr)/ min Tn ( (fii ) = 0?

	

(6)
i=1,2, . . .,rn->x

Perhaps our conjecture (1) can be generalised and there is an a( (fit , . . . , (fir ) for
which

limT(n ;W,, . . .,Wr)/n"( '6,	fi,) =C, 0<C<-

Faudree and Simonovits believe that

a(C4i %4) < min(a(C4), a((64))

	

(8)

and they hope that their method will give (8) .
To end this long chapter I make a few remarks on some questions which

certainly have not been investigated carefully . Let fk be the largest integer for
which there is a W(k ; tk) satisfying

lim T(n ; Ifi(k ; fk)/n'2 < x .

	

(9)
n=

K(2 ; k - 2) shows that ek , 2k - 4 and our conjecture (3) easily gives t1k = 2k - 4.
Perhaps this can be proved without (3) but by the probability method I could only
prove that T(n ; G(k ; 2k - 3)) > cn 2 . Perhaps the following problem is more
interesting: What is the largest integer tk for which there is a G(k ; tk ) satisfying

T(n ; (fi(k ; tk )) =a(n)?

	

(10)

If (10) holds then Ifi (k ; t) can of course not contain a C 4 . It would be interesting
to determine other forbidden bipartite graphs whose presence prevents (10) from
holding . I have no good guess about the size of tk , perhaps

2k - c,k'2

	

2< tk < 2k - CA' .

	

(11)
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9 . Now I give a very short discussion of extremal problems on hypergraphs . To
make the paper short I state only a few new problems . A long paper of mine is in
the press on similarities and differences of extremal problems between graphs and
hypergraphs and Frankl and Füredi have a long forthcoming paper in the J .
Combín . Theory (A) on this subject .

,3Let G ) be two triangles with a common edge and Gz 3) be the following
G(3) (6 ; 3) having the vertices x,, x 2 , x 3, x4, x s, x b and the edges
fxt , x 2 , x 3 } fx3i x4 , xs} 42, x4, x b} . An old problem of W . Brown, V .T . Sós and
myself asked for the determination or estimation of T(3)(n; G,3) , G23 )) . Ruzsa and
Szemerédi proved that

T(3 ) (n ; G,3) , G231)/n2 ~ 0

T(n ;G('»In"--->0
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(1)

but for every E >O T (3 ) (n ; G,3~, G23~)/n2-E-x. In fact they prove a sharper
result . An asymptotic formula for T(3)(n; Gi , G23~) seems hopeless at present .
(1) is certainly a new phenomenon . I then asked if there exists for some r a G (')
so that there is an a for which

but for every e > 0 T(n ; G('))/n"-`-> -. Frankl and Füredi found such a G( ') for
r = 5, a = 4. It is not yet known if for r < 5 such a hypergraph exists .
Frankl gave a talk on hypergraphs at our meeting in Hakone . After his lecture

I asked : Is it true that every G (3)(n; 1 + (" z')) contains our G(3) and that the only
G ( 3 ) (n ; ("2 1 )) which does not contain our G2 consists of the ("2 ~) triples which
have a common vertex? Frankl informed me that this has already been proved by
him and Füredi but that the proof is not quite simple . I at first though that if
every vertex is contained in only o(n2 ) triples then every such G(3) (n ; En 2) will
contain our G2 . This was easily disproved by Frankl but perhaps such a G3(n)
can only have 2n2(1 + 0(1)) edges. I then asked : Is it true that if every pair of
vertices (x, y) is contained in only <Cn2 triples then every G(3)(n ; en 2 ) must
contain our G (

23) ? During our excursion Füredi found the following nice
counterexample :
Let n =P2 + p + 1 . We will have 2n elements A and L where A corresponds to

the points and L to the lines of a finite geometry of n points. We divide A into
two disjoint sets B U C, both having (z +0(1))p2 elements and both meet every
line of our finite geometry in (z + o (1))'n2 points, Miredi's system now consists of
the (1 + o(1)) 4''n 2 triples (x, y, t°) where x c- B, y E C and f c- L where x and y are
on the line t°.
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Whereupon I modified my conjecture :
Assume that every (x, y) is contained in only o(n~) triples of our system . Then

if such a triple system has cn 2 edges must it contain a G2 . It seems to speak
against this conjecture that it was born as a response to several counterexamples .
To end this section I would like to state an old problem of mine which seems very
difficult : Is it true that for every k and 8 > 0 there is an no so that for every n > n o
every G( 3)(n ; En 2 ) contains either a G(

23) or a G (3 ) (k ; k + 3)? For k = 3 this was
our problem with Brown and V .T . Sós which was settled by Ruzsa and Szemerédi
but for k > 3 very serious new difficulties appear and the problem is still very
much open .
By the way Frankl proved a result on hypergraphs which is related to

conjecture (1) of the previous chapter .
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10 . To end the paper I state a few miscellaneous problems . First of all here is a
very nice problem of Tuza . Let % be a graph and k the largest integer for which G
has k edge disjoint triangles . Is it then true that G can be made triangle free by
the omission of at most 2k edges? K(4) and K(5) shows that if true the result is
best possible. If true many generalisations and extensions will be possible .

Rothschild and I posed a few years ago the following problem : Assume that
every edge of a .̀i(n ; cn 2 ) is contained in a triangle . Denote by h(n ; c) the largest
integer so that every such graph has an edge which is contained in at least h(n ; c)
triangles . The determination or good estimation of h(n ; c) does not seem to be
quite easy. Szemerédi observed that his Regularity Lemma easily gives that for
every c > 0

lim h(n ; c) _ -
n~x

and Noga Alon proved that for small c, h(n ; c) < c'n2 . It is easy to see and well
known that for c > á one has h(n ; c) > c,n,, but without much difficulty the
following stronger result can be proved .
Let e > 4n á - cn and assume that every edge of G(n ; e) is contained in a

triangle . Then there is an absolute constant c, = c,(c) for which our (fi(n ; e) has
an edge which is contained in %c,n triangles . That the result is best possible is a
slight modification of Noga Alon's proof that if f(n)-> - then there is a
G(n ; (4n 2 - of(n))) each edge of which is in a triangle but every edge is only in
o(n) triangles .
We give an outline of the proof . Let G(n ; án 2 -cn) be a graph each edge of

which is contained in a triangle . Observe first that if (x 1 , x z , x3) is a triangle of



our G, then we can assume that

V(XI) +v(x2)+v(x3)--n(l+E)

For if (1) would not hold then one of the edges (X I , x2), (XI, x3), (x2, x 3) were
contained in at least 3(En) triangles and thus our theorem is proved in this case .
Henceforth we can assume that (1) holds for every triangle of our graph .

Assume next that our G(n ; Qn 2 - cn) contains more than lOc vertex disjoint
triangles (xii) , x(` ) , x(' ) ) . Omit all these vertices from our G. Then by (1) we
obtain a 16(n - 30c) which has more that 4(n - 30c)2 edges and therefore by an
old and elementary result of mine it contains an edge which is contained in c'n

triangles, by the result of Edwards c' = 6 + 0(1) .
Thus we can assume that (1) holds and our G has at most 10c vertex disjoint

triangles . But then by a simple argument at least one vertex is contained in
n'1130c triangles and therefore at least one edge is contained in at least n1130c

triangles, which proves the first part of our theorem .
The proof of the second half of our assertion is very simple . Let I G I = n,

JAI ='(,2, where ~, tends to infinity as slowly as we please . IBI = ICI = 2(n - ~2,) .

Join every vertex of B to every vertex of C. Divide B and C into fn roughly equal
disjoint sets Bi and C,- . Join xi ; EA to every vertex of Bi and C;. If fn tends to
infinity sufficiently slowly our graph has 4(n 2) - of (n) edges and each edge is on
o(n) triangles as stated .

It would perhaps be of interest to improve the estimates for h(n ; c) and
investigate what happens if c = c n 0 .

Pyber and I considered the following related problem . Assume again that every
edge of a W(n ; e) is contained in at least one triangle. Denote by L(n ; e) the
largest integer so that our graph contains at least L(n; e) triangles . Trivially for
all e L(n ; e) > e13, and the result of Ruzsa and Szemerédi shows that for
e < cnr3(n) e13 is exact. On the other hand it is well known and easy to see that if
e > (1 + E)an 2 then L(n ; e) > c, n 3 even if we do not assume that every edge is
contained in a triangle . We thought that perhaps for e > cn2 L(n, e) > (z + o(l))e .
The complete bipartite graph with a matching shows that if true this is best
possible` . It would perhaps be of interest to investigate what happens to L(n ; e) if
eln2 ___> 0 very slowly .

Last year Stephan Burr and I came across the following problem : Let f (n) be
the smallest integer for which if we color the edges of K(f(n)) (i.e . a complete
graph of f (n) vertices) by two colors then there either are two monochromatic
K(n - 1)'s with a common vertex where the two K(n - 1)'s have different colors
or there is a monochromatic K(n) . Is it true that f (n) = r(n ; n - 1)? This is open
even for n = 5 .

The following simple problem of Renu Laskar and myself seems still to be

1 P. Frankl has just proved this conjecture .
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open. Let g(n) be the largest integer for which every (fi(n ; [án 2] + 1) contains a
triangle x,, x2, x 3 for which the sum of the degrees of the vertices x l, x 2, x 3 is
,g(n) . We proved

(1 + c)n < g(n) < (1 + 0(1))2(V3- - 1)n .

The upper bound is probably best possible . Clearly many generalisations and
extensions are possible .
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