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Abstract. For i = 1, . . . . n let C(x;, r,) be a circle in the plane with centre .x i and radius r; . A repeated
distance graph is a directed graph whose vertices are the centres and where (xi, x;) is a directed edge
whenever x; lies on the circle with centre x, . Special cases are the nearest neighbour graph, when ri is
the minimum distance between x, and any other centre, and the furthest neighbour graph which is
similar except that maximum replaces minimum . Repeated distance graphs generalize to any
dimension with spheres or hyperspheres replacing circles. Bounds are given on the number of edges
in repeated distance graphs in d dimensions, with particularly tight bounds for the furthest
neighbour graph in three dimensions . The proofs use extremal graph theory .

1 . Introduction

Let X = {x,,...,x„} be a set of n points in R d , d >_ 2 and let R = {rr, . . .,r,} be a
set of n positive real numbers . The repeated distance graph dd(X, R) is a directed
graph on the point set X with edges (x i , xj) whenever d(xi , xj ) = r,, where d denotes

Euclidean distance . In this paper we will be investigating the number fd (n), which
is the maximum number of edges that a repeated distance graph on n points in d

dimensions can have. We denote by Gj (X, R) the undirected graph obtained from
(;d(X, R) by removing the directions on the edges and by deleting any multiple edges .
The graph GUd(X, R) is an undirected graph on X where (x,, xt) is an edge of G,(X, R)
whenever both (x,, xj) and (x,, x,) are edges of Gd(X, R) . Many special cases of these
graphs have been studied, especially when d = 2 . We will give several examples of

these graphs and some selected references . For a complete bibliography the reader
is referred to the excellent collection of Moser and Pach[10] . As a notational

convention, functions representing the number of edges in directed graphs are
denoted with lower case f, and functions for the number of edges in undirected
graphs are denoted F.

Example 1 . Unit Distance Graph

This graph is obtained by setting ri = 1, i = 1, . . . , n. Since the unit distance graph
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is symmetric Gd(X, R) = Gd (X, R). Denote by Fd
d the maximum number of edges in

a unit distance graph Gd(X, R) in d dimensions. Chung, Szemerédi and Trotter [4]
have shown that

Fi"(n) < en s l' .

and Beck[2] has shown that

F3 d (n) < ns ~ ,
which improve on many earlier results . The best lower bounds are

Fi d( n) > n'"0910") and

F3 d (n) > n 4i3 loglog n

proved by Erdös[5] . In higher dimensions, Lenz (unpublished) gave examples to
show that

Fád (n) >
\2

-
2[ó/2]I nz + c

d n

and Erdös[5] showed that

Fd d (n) < (2
2[d/2] / n

z + 0 (n 2- `a).

Lenz's examples are constructed by taking [d/2] pairwise perpendicular 2-planes
in R d through the origin, and in each of them by picking [n/[d/2]] points on the
unit circle around the origin.

Example 2. Minimum Distance Graph
Let r = mini Il, d(x i , x,). Setting ri = r we obtain the minimum distance graph, which
is also symmetric . Let Fá"(n) denote the maximum number of edges in a minimum
distance graph Gd (X, R) in d dimensions. Harborth[7] has shown that

F2"'(n) _ [3n - /12n - 3] .

Example 3 . Nearest Neighbour Graph
This non symmetric digraph is formed by setting ri = minj#i d(xi ,xj ), i = 1, . . ., n.
This graph, which contains the minimum distance graph as a subgraph, has many
applications in pattern recognitionE13] . Let fd-(n) denote the maximum number
of edges in the nearest neighbour graph QX, R) . Since this graph is planar for
d=2,

f2-(n) <_ 6n - 12 .

Example 4 . Diameter Graph
Let r = max,#jd(x„ xj By setting ri = r, i = 1, . . ., n we obtain the diameter graph,
which is a symmetric digraph. Let Fd`a`"(n) be the maximum number of edges in the
diameter graph Gd(X, R) in d dimensions. Sutherland[12] proved that

Fzd'am(n) = n,

solving a problem of Hopf and Pannwitz . Grünbaum[6] Heppes[8] and Strasze-
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wicz[l 11 independently proved Vázsonyi's conjecture that

F,"- (n) = 2n - 2.

In higher dimensions, d >- 4, the previously mentioned results of Erdös and Lenz
(Example 1) apply also to the diameter graph.

Example 5 . Furthest Neighbour Graph
By setting r ;=max i ,, jd(xi,xj ) we obtain the non symmetric furthest neighbour
graph . This graph contains the diameter graph as a subgraph, and also finds
application in pattern recognition. Let ff"(n) denote the maximum number of edges
in a furthest neighbour graph in d dimensions . Avis[1] has show that

fr"(2n) = 6n - 3 .

In this paper we obtain new results for repeated distance graphs, especially in
dimension 3 and higher. These results are summarized below .

Theorem 1 . There are constants co , c„ e o , e t such that

f2 (n) < "2n32 + n/2

	

(1)

4 + 2 < fs(n) < 4 + Co n e

	

(2)

H2

C1 [d/2]) < fd(n) < n 2
(1

-
[d/2

]) + C i n t

	

d > 4

	

(3)

n 2 3n

	

n2 3n
4 + 2 < f3"(n~ < 4 + 2 + 255 .

	

(4)

2. Repeated Distances

In this section we prove the first three parts of Theorem 1 . First we introduce some
notation. We denote by the complete r-partite graph with t, vertices in
colour class i. If all the colour classes have the same number t of vertices, the
notation is abbreviated to K,(t) . If all of the edges of a complete r-partite graph are
directed in such a way that between any two colour classes the edges are all oriented
in the same direction, we call the digraph homogeneous and denote it 1~,l,,- . .,,
(respectively, k (t)) . Strictly speaking, this notation denotes an equivalence class of
2(2 ! graphs, but for our purposes the actual direction of the edges between each pair
of colour classes is normally irrelevant . It will be specified explicitly only where
necessary .

The proofs in this section are based on the following three lemmas . The first is
an elementary geometric result, and the others are standard results in extremal
graph theory . Let Gd (X, R) be a repeated distance graph in d > 2 dimensions.
Let T be a subset of t vertices of CCd (X, R). A non-empty disjoint subset U of vertices
are called common predecessors if for every u e U and every t e T, (u, t) is an edge
in QX, R).
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Lemma 1 . Let U be a set ofcommon predecessors of T, then
(a) T lies in an orthogonal subspace of Rd to U, hence dim(T) + dim(U) < d ;
(b) ff T contains at least 3 points, then dim(T) >- 2.

Let ex(n, s, t) denote the maximum number of edges that a graph with n vertices
and no K,,, can have . Let ex(m, n, s, t) denote the maximum number of edges that
a bipartite graph G,„,,, can have if it does not contain a K,,, with s vertices in the
first colour class and t vertices in the second colour class . Then an argument of
Kovari, Sós and Turan[9] gives the following upper bounds (see [3], p. 310).

Lemma 2 .
(a) ex(n.s, t) < 2(s - 1) 1"(n - t + 1)n 1-1'k + 2(t - 1)n for 2 <_ s, 2
(b) ex(m, n, s, t) < (s - 1) rt`(n - t + 1)m' '~' + (t - 1)m, for 2 S s < m, 2 G t <- n.

The following lemma is an improved version of the Erdős-Stone Theorem
proved by Erdős and Simonovits (see [3]).

Lemma 3 . For every integer t there is a constant c such that, if n is sufficiently large,
every graph of order n with more than

2(
1 -r)n 2

+en2- "

edges contains a K, + ,(t) .

We will now prove the first three parts of Theorem 1 . The first part is a simple
consequence of Lemma l .

Proof of (1). We first show that G62(X,R) cannot contain a 1~2,3 with all edges
directed into the 3 element colour class . Suppose it did . Let T be the 3 element
colour class and let U be the other colour class . By Lemma 1(b), dim(T) >! 2 hence
dim(U) = 0, a contradiction . Let d + (x) denote the in degree of a vertex . By a well
known argument we conclude that

x

(d'2 z)1 < 2 (
2
n ),

and therefor

	

/
I

e

n íf2(2)%nl < 2
C2)

which implies

f2 (n) < ,r2 n 3/2 + n/2 .

	

O

We remark that the right order of magnitude for the bound (1) can be obtained
by the following simple argument . Let k = [n','2].Observe that if there are less than
k vertices with degree at least 2k, then the total number of edges in the graph can
be at most kn + 2k(n - k) < 3n3,'2. However, there cannot be k points with degree
2k or more . For otherwise, since two circles can intersect in at most two points, the
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total number of points must be at least

2k 2 -2121=k2 +k>n,

which is a contradiction. The bound
\

in

ll

(1) is probably far from the truth, in fact we
conjecture that

Beck has recently proved that

f2(n) = o ( n 3r2)

(private communication) .
The next two lemmas will be required to prove equations (2) and (3) .

Lemma 4. For d >- 3, let r = Fd/21 + 1. Then G.(X, R) contains no homogeneous
K,(3) .

Proof: Suppose the lemma is false . By repeated application of Lemma I (a), each of
the r colour classes of k,(3) lie orthogonal to each other. In addition, at least r - 1
colour classes must have incoming edges . Again by Lemma I (b), these colour classes
must have dimension at least 2 . The remaining colour class must have dimension
at least one, so the total dimension is at least

2(r-1)+1=2[d/21+1>d,

a contradiction .

	

1]

Lemma 5. For positive integers r >_ 2, t i , . . ., t, there is an integer n = f'(tt, . . .It,)
such that every orientation of K,(n) contains a homogeneous

	

as a suhgraph .

Proof. For positive integers s, t let

h(s, t) = min {s2 21 , t2 2,1 .

We first show that every orientation of K s ,, ,, s , t contains a Ks ,, . Indeed, suppose
s >- t so that h(s, t) = s22'. Let S and T denote the two colour classes of an
orientation of K6(s .t),H(s.,) . For a fixed set of 2t vertices in T, there are 2" ways in
which edges can be directed from a vertex in S . Therefore, at least h(s, t)/2 2` = s
vertices in S behave uniformly with respect to this set . At least t of the 2t vertices
chosen from T must have all edges from this set of s vertices going in the same
direction, giving the required k,,, .

Recursively define integers

ao = 11, a, = h(a s-t, is+t),

	

s = 1, . . , r -

We will show that

,(n) < ni+('!"9"9')

where

f '(t) = t

	

for all integers t .

f'(tv . . .,t, < fr- (a t , . . .,a, t ),
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The proof is by induction on r. For r = 2,

.1 2 (tí, 1 2)

	

h(tl,t2) = h(aO,t2) = f 1 (al) .

Let n = fr-I(a,, . . .,a,_I) for some r >- 3 and any integers t,, . . ., t r . We will show
that every orientation of K r (n) contains a homogeneous K,__, Let T, . . .' T,
denote the colour classes of a Kr (n). By induction, every orientation of the edges
between T2 , . . , T, contains a homogeneous Ka

	

with a ; vertices in T+l,
i = 1, . . . , r - 1 . Choose any a,-, vertices in T, . Since

ar-I = h(ar-2, tr)

we can find a homogeneous Ka ,, with ar _ 2 vertices in T and t, vertices in T .
We continue in this way for i = 1, . . ., r - 2 . Since

a,- i - 1 = h(ar-i-2,tr-i),

we can find a homogeneous Ka-i., . amongst the a,_ i _, vertices in T, found in
the preceding iteration . At the final step, we find a homogeneous Kao . , 2 =
between T, and T2 . By construction, the t i , . . . , t, vertices selected by this procedure
give the required homogeneous subgraph .

	

11

The bound obtained by this lemma seems extremely loose . In the following
proofs, we will use the above lemma with t i = 3, i = l, . . ., r. We introduce the
abbreviated notation

)!(r) = j',(3, . . .,3) .

Proof of (2). The lower bound is obtained by placing rn ; 21 points on the unit circle
x 2 + y2 = 1 and the remaining points on the positive z axis below z = 1 . For the
upper bound, we first show that G3 (X, R) cannot contain a K3 .3 . Suppose it did,
and let T and U be the colour classes. Then U is a common predecessor set for T,
and vice versa. By Lemma 1 we obtain that T and U are orthogonal and that

dim(T) >_ 2 and dim(U) >- 2,

a contradiction . Therefore by Lemma 2(a),

IG3 (X,R)I < ns13 + n.

By Lemma 4, G3 (X, R) has no K3 (3) and so G 3 (X, R) has no K 3(a(3)) by Lemma 5 .
This implies by Lemma 3 that

zn

	

2-1(•1 31G3(X, R)I < 4 +ccn

for some constant co . The upper bound in equation (2) follows from the fact that

f3 (n) =163(X , R) I + IG3 (X, R) I .

	

O

Proof of (3) . The lower bound will be proved in section 4 as it applies also to the
furthest neighbour problem . For the upper bound set r = rd,/21 + 1 as in Lemma
4. Therefore G,(X, R) does not contain a k,(3) . From Lemma 5 we obtain an integer



3. Furthest Neighbours

In this section we obtain a tight bound on the number of edges in the furthest
neighbour graph in R 3. Let X be a set of n points in R 3 , and let Gd3(X,R) be the
furthest neighbour graph . We call X a suspension if it can be transformed into a
point set X* by a suitable rotation, translation and scaling where

X * s {(x, y, 0) : x 3 + yz =I } U { (0,0,z) : z c- R~ .

Informally, the points of a suspension lie either on the polar axis or the equator of
a sphere. We first prove that if n is sufficiently large then the furthest neighbour
graphs with the maximum number of edges contain a very large suspension .

Lemma 6. Let X be an n point set that maximizes the number of edges in 63(X, R).
Then there is an integer n o such that if n >_ no then X contains a suspension on
n - 6 points.

Proof : For n >- n o let X be an n point set that maximizes the number of edges,
denoted fit"(n), in the furthest neighbour graph 63(X, R) . Let

X=HUS,

where H is the set of convex hull extreme points of X . Further let h = CHI and
s = ~S1 = n - h . We begin by showing that h and s are approximately equal . First
some notation . For i a vertex and T a set of vertices, we denote the number of edges
directed from i to Tby di , T and the number of edges from T to i by d T , ; . The number
of edges with both endpoints in T is denoted d T . For sets of vertices T and U, let
d T , a denote the number of edges directed from T to U.

Let G3 (H, R) be the induced subgraph of G3 (X, R) on the set H . Observe that
63 (H, R) cannot contain an induced Iá(3, 3) . For if it did, let U and T be the two
colour classes and assume that all edges are directed from U to T. By Lemma I(b),
dim(T) >- 2 and hence dim(U) = 1 by Lemma I(a). But this means that U consists
of three collinear points, one of which cannot be an extreme point. Therefore by
the argument used in the proof of (1)

sI
r (d'3x)) <

2
(h) ,

where d+ (x) denotes the number of incoming edges to vertex x from other vertices
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x(r) such that G,(X,R) does not contain a Kjo#)) . Therefore, by Lemma 3

1R)

	

l

	

Ic t n z-t/" (r )IG,(X

	

-I <-C

	

r l )n2 +

for some constant c, . The upper bound in (3) follows from the fact that

fd(n) G_ 21Ga(X, R) 1 . El
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in H. Recall that do denotes the number of edges in G3(H, R). We have

h (d3h ) < 2 ( h) ,

do < 3há%3.

The example of Lenz, mentioned in Example 1, shows that

f3 "(n) > n z %4 .

We show that if n > 3 9 then h < n/2 + n"". Suppose not. First observe that if y is
a furthest neighbour of x e X, then y e H. So all edges in G3 (X, R) terminate in H.
Therefore

f3"(n) < hs + d o

< (n/2 - 0 9)(n/2 + n s,9 ) + 3n 5,13

= n2/4 - 111e,•9 + 3n 5,3

< nz/4

	

for n >- 3 9 ,

a contradiction . An identical argument shows that h >- n/2 - n" . Hence h and s
are approximately equal .

Next we show that there exist points x, y in S that have at least 3 + 1 common

neighbours in H . Suppose that no such pair of vertices exists . Recall that ds,n
denotes the number of edges directed from S to H . From the previous discussion
we see that

whence

f3 "(n) = d n + ds , n > n z /4,

z
ds,u > 4

- 3nI,3 .

On the other hand, we have that

íd2) < 3(2)
and hence

h
(d,,,Ih) n(s) nsz

2 < 3 2 < 6

Therefore

z 6h d,,,, Ih
n

	

2
z

However it is easy to check that the right hand side is at least
3g

+ o(n2) and so
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3 l ~ Z n
s is at least Z

	

+ o(n), a contradiction for suitably large n . This establishes

the claim that there are two points x, y in S with at least n/3 common neighbours
in H. Denote the common neighbours N(x, y) . We will now show that every other
point u in S is adjacent to N(x, y) in G3 (X, R) . The points in N(x, y) are cocircular .
Therefore if some point u of S is not adjacent to all of them, then it can be adjacent
to at most two of them . In this case

du,H<_h-n/3+2<n/6+n"+2 .

Consider replacing u by a point on the segment xy not already in our point set .
Note that since u is an interior point, it cannot be the furthest neighbour of any
other point. Since its new out degree is at least n/3 and the degrees of other points
do not decrease, we obtain a set of points with more edges in its furthest neighbour
graph, a contradiction. We may therefore assume for that all points in S are
collinear .

We next argue that most of the vertices of H are cocircular . Here the argument
is complicated by the fact that moving a vertex in H may cause it to become the
new furthest neighbour of some vertex x . If x previously had several furthest
neighbours, its out degree may now be reduced .

We partition the points in H into those points H, that are cocircular with
centres in S, and the remaining points H 2 . There may be up to two points in H 2
which are also collinear with the points in S . For convenience, we remove these
points from H2 and place them in S . Therefore if H2 = o . X is a suspension. We
will show that if 112 is sufficiently large, all of its vertices may be moved to H, with
a net increase in the number of edges in G3 (X, R). Let h, = IH, I and h 2 = JH21 . We
will show that if n is sufficiently large, then a furthest neighbour graph with
maximum number of edges has h2 <_ 14.

Let x be any point in H 2 . As S contains at most two extreme points,

dzs <2,

since x is not in H, we have

ds ., < i,

and since x is not collinear with S we have

dx,H < 2 .

Consider the bipartite graph G* with colour classes H, and H2 , and all edges
from 63(X, R) that were directed from H, to H2 . Recall that dH Hy denotes the
number of edges in G*. Since G* cannot have a K3,31 we have from Lemma 2(b) that

dn ,, HZ < ex(h 2 ,h l ,3,3) < 2 i/3 h 2 hi" + 2h, .

Now consider the subgraph of G63 (X, R) induced by the points in H 2 . Recall that
dH, denotes the number of edges in this subgraph . Then since H 2 is a set of extreme
points,

dH, < 3hz,1 3 .
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Now consider moving all of the vertices in Hz to the circle through H t . The
total number of edges lost in the furthest neighbour graph by such a move is at most

d n ,, H2 + dnz + dn, s + d s, nz + d n , < 2i,hzh'," + 2hi + 3hzr3 + 2h + s + 2h,

<_ 5hz n z/3 + 7n

Observe that the set ofh z vertices moved onto the circle will create at least

n

	

\1sh2 > 2 - n" / h z

new edges . If h z >- 15, for all sufficiently large

I

n

n
2 -

0" hz > 5hznz,13 + 7n .

Hence for all sufficiently large n, h z < 14 and so G3 (X, R) must contain a suspension
of size n - 14.

	

0

Proof of (4). Let X be a suspension on n points with h points on a circle and n - h
points on the central axis . Each point on the axis has h furthest neighbours on the
circle and possibly two additional furthest neighbours on the axis itself . Each point
on the circle can have at most two furthest neighbours on the circle and two on the
central axis. However, a simple geometric calculation shows that, if the points
on the circle have two furthest neighbours on the axis, then these two points are
further apart than they are from the circle . This means that they have no furthest
neighbours on the circle. It can easily be seen that this does not give a configuration
with the maximum number of edges. It can also be shown that in the maximum
configuration there are in fact no edges between points on the axis . Hence the total
number of furthest neighbour pairs in a suspension on n points is at most

z
h(n-h)+3h<_ 4 + 2 +4 .

By Lemma 6, for n >- no the furthest neighbour graph with maximum number of
edges contains a suspension of size at least n - 14. Each of the points not in the
suspension can have edges directed towards at most four points in the suspension .
Each can be the furthest neighbour of at most one point on the axis, h points on
the circle, and the 13 other points not in the suspension . Therefore each point can
contribute at most h + 18 edges. Therefore this graph can have at most

2

h(n-14-h)+3h+14(h+18)<
4 +2+255 .

This proves the upper bound in (4) . For the lower bound, let n = 4k + 3 and set
h = 2k + 3 . Space h points evenly on the unit circle in the x - y-plane with centre
the origin . Let r denote the farthest distance between points on the circle . It can be
verified that 1 < r	< 2.This distance occurs 2h times . Now place a point on (0, 0, 1),
a point on (0, 0,1"r z - 1) and 2k - 2 points evenly spaced between them . Each of
these points have h furthest neighbours on the circle and each point on the circle
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has one furthest neighbour on the axis . There are

3(2k + 3) + 2k(2k + 3) = 4 + 2 + 4

edges in this graph . A similar construction for other values of n proves the lower
bound in (4) .
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