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§0. Introduction

Let F(X, Y) c Z[X, Y] be an irreducible binary form of degree n >, 3 . In
1909, Thue proved that for each integer m the equation F(x, y) = m has
only finitely many solutions in integers x, y . Mahler extended Thue's result
by proving that the number of solutions of F(x, y) = m can be bounded in
terms of F and the prime divisors of m . Several bounds for the number of
solutions have been given . Let S = { p	p,,. } be a set of prime numbers .
Evertse solved an old conjecture of Siegel by proving that if F has non-zero
discriminant, then the number of coprime pairs x, y c- Z such that F(x, y)
is composed of primes from S does not exceed exp (n 3 (4s + 7)) . In the
proofs of these results S-unit equations are used . An example of an S-unit
equation is the equation x + y = z in coprime positive integers x, y, z each
composed of primes from S. Evertse also showed that this equation has at
most exp (4s + 6) solutions . These results played a key role in the solution
of an old conjecture of Erdös and Turán . Györy, Stewart and Tijdeman
showed that if A and B are finite sets of k and l positive integers, respectively,
and k >, l > 2, then there exist a in A and b in B such that the greatest
prime factor of a + b exceeds C log k loglog k where C is some positive
constant .

In this paper we want to prove that there are Diophantine equations of
above mentioned types which have surprisingly many solutions, thereby
showing that some of the above results are not far from being the best
possible ones . In §1 we consider the problem of Erdös and Turán. It follows
from Theorem 1 that the bound C log k loglog k cannot be replaced
by (log k loglog k)2 . In §2 we turn to S-unit equations . We show in Theo-
rem 4 that the equation x + y = z can have more than exp ((s/log s)' iz )
solutions in coprime positive integers x, y, z each composed of primes
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From S. Finally, we deal with Thue-Mahler equations in §3 . It follows from
Theorem 5 that Evertse's bound exp (n 3 (4s + 7)) cannot be replaced by
exp (n's'l"/log s), not even when Fis just a polynomial in one variable .

§I. Prime powers of sums of integers

For any integer n > 1 let co(n) denote the number of distinct prime factors
of n and let P(n) denote the greatest prime factor of n . For any set X let IX I
denote the cardinality ofX. In 1934 Erdős and Turán [15] proved that if A
is a finite set of positive integers with JAI = k, then, for k >, 2,

co f] (a + á)~ > C, log k .
a, d e

	

/A

They conjectured (cf. [14] p . 36) that for every h there is an f (h) so that if
A and B are finite sets of positive integers with JAI _ IBI = k >, f(h) then

0 11 (a + b) I > h .
ac A,bEB

Györy, Stewart and Tijdeman [23] proved the conjecture . They showed that
the following much stronger assertion is an easy consequence of a result of
Evertse [16] . Let A and B be finite sets of positive integers . Put k = JAI,
I = IBI . If k >, I > 2, then

w

	

H (a + b)' > C2 log k
aeA,be

	

/B
(1)

where Cz is an effectively computable positive constant . On combining this
result with the prime number theorem we obtain that there exist a in A and
b in B such that

P(a + b) > C3 log k loglog k

	

(2)

where C3 is an effectively computable positive constant . Other lower bounds
for maxaeA,bcB P(a + b) have been given by Balog and Sárközy [2], Sárközy
and Stewart [36, 37], Györy, Stewart and Tijdeman [23, 24] and Stewart and
Tijdeman [44] . For surveys of these results we refer to Stewart [43] and
Stewart and Tijdeman [44] .

In this paragraph we want to show that (1) and (2) are not far from best
possible, when I is small. It follows from Theorem 1 that when I = 2 the
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right hand sides of (1) and (2) cannot be replaced by ((1/8) + -.)(log k) 2
loglog k and ((1/4) + e)(log k loglog k)2 , respectively, for any e > 0 .
Theorem 1 deals with values of l which are o(log k) . It follows from this
theorem that the right hand sides of (1) and (2) cannot be replaced by (log k)'
when l > 2 loglog k . In Theorem 2 we consider values of l of the form
b log k with 0 < 8 < 1 . It follows from this theorem that, even for such l,
the right hand side of (2) cannot be replaced by k' - F for every 8 > 0 and
k >, ko (8, a) . We conjecture, however, that for l > log k and for every
e > 0 (2) can indeed be replaced by

P(a + b) > k`

for k >, k, (a) . The trivial example a; = i, bi = j - 1 shows that the right-
hand side of (2) cannot be replaced by k + l .

THEOREM 1 . Let 0 < r < 1 . Letf- Ilk > , - [EB be a function such that f(x) oc
as x -> oo and that f (x)/log x is monotone and non-increasing . Let k and l be
positive integers such that k exceeds some effectively computable number
depending only on r and f and that 2 < l < (log k)lf(k) . Then there exist
distinct positive integers a	ak and distinct non-negative integers
b, , . . . , b, such that

P
(

k I fl H (a; + b i ) I < C(1 + £) log k
log

C log k ll~ _
,_, ; ,

	

l

	

JJ1

It is not hard to derive upper bounds for the numbers a	ak and
b	b, in Theorem 1 from the proof.

Theorem 1 follows from Lemma 3 which is derived from Lemmas 1 and
2. Lemma 1 is a combinatorial result which is fundamental for all the results
in this paper .

LEMMA l . Let N be a positive integer and let W be a non-empty subset of
11, . . . , NJ . Let l be an integer with 1 < l < I W1 . Then there is a set of
non-negative integers B with 0 e B and IBS = l and a set A such that

A+Bc W and JAI
íJW1\ ~N- 1
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Proof. There are (`, ~) belement subsets of W. To each such subset {w, , . . . ,

w,} with w, < . . . < w,, associate the (l - 1)-element subset {w z -

w, , . . . , w, - w, } of 11, . . . , N - 11 . Thus there is some (1 - 1)-element
subset {b	b, _, } associated to at least k >, (~`I )/(,"_ ; ) /-element subsets
of W. Let a	ak denote the least elements of these k different belement
subsets associated to {b	b,-, } . Thus a	ak are distinct members
of W. The lemma follows with A = {a	ak }, B = {0, b,, . . . , b,_,} .

0

let O(x, y) be the number of positive integers not exceeding x which are free
of prime divisors larger than y .

LEMMA 2 . Let x be a positive integer and u a real number with u >, 3. There
exists an effectively computable constant C such that

O(x, x' , ") >' x exp - u Clog u + loglog u - 1 + C
loglog u

log u

Proof. See Theorem 3 .1 of Canfield, Erdős, Pomerance [7] .

For any real number z we shall denote the greatest integer less than or equal
to z by Lz] and the least integer greater than or equal to z by rz , .

LEMMA 3 . Let c and S be real constants with c > 1 and 0 < 6 < 1 . Let f
be as in Theorem 1 . Let N and 1 be positive integers such that N exceeds
an effectively computable number depending only on c, b and f and that
2 < l < (log N)lf(N). Put

(

	

log N

	

log c
m = r exp {(1 - a) log((log N)/1) 1 + l

	

~

and t

	

c
(log N~'

= L

	

1

	

J

Then there exist distinct integers a,, . . . , a,„ in {1, . . . , N} and there exist
integers b, , .

	

b, with 0 = b, < b2 < . . . < b, < N such that

m 1
PC 11 11(a;+b;) < t .
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Proof. Put W = {n < N: P(n) < t} . Then I WI _ ~(N, t) . For N suffi-
ciently large we have

~(N,,t) % ~(N, Mf(N))`.1) > c(.f(N))`/2 > 1.

By Lemma 1 there exist sets A and B such that 0 E B, IBI = l, and
P(a + b) 5 t for all a e A and b c B . It only remains to prove that
JAI >, m . By (3), for large N we have l < (~ (N, t))' 13 . Hence, by Lemma 1,

/ ~ (N, t) A í N - 1 ~ (>/í(N, t) - /V
JAI

	

(1))
l

	

/ \ l - I /

	

II
N'- '

	

IN`-'

	

(1 + 0

Here and later in the proof, 0(1) refers to N -+ co . Put x = N, y = t,
u = (log x)/log y and v = (log N)II. Then v , co as N -> oo . Hence,

_ log N

	

log N
U

	

log Lcv'l

	

l log v + log c + 0(1)

_ log N 1

	

log c + 0(1)

	

log N

	

v(log c + 0(1))

I log v(

	

l log v

	

l log v

	

l(log v) 3

_ (I + o(1)) v
log v

This yields log u = log v - loglog v + 0(1) and loglog u = loglog v +
0(1) . Now, by Lemma 2,

(«N, t))'

Hence, by (4),

~~- logN

	

v(log c + 0(1))
~(N, t) , N exp

	

l log v +

	

/(log v)~

	

(log v - 1 + 0(1))

N

	

log N

	

(log N) (log c + 0(1))
JAI > (1 + 0(1))

I
exp X

	

log v +

	

/(log v) 2

X (log v - 1 + 0(1)) }

41

(3)

(4)
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1

	

~log N

	

(log N) (log c)

	

C logN)~
_ (1 + 0(1))

Z
exp

log v +

	

l log v

	

+ o log v

I
exp {(1 + 0(1)) log

v

CI
+ log c)~

I

	

g

Observe that

l < log N = exp to
(

logN)~
log v

Hence JAI > m for N sufficiently large .

Proof of Theorem 1 . Put w = (log k)h . Then w -> oo as k -> oo . We
are going to apply Lemma 3 with N = Lexp ((1 + E) (log k) (log w))J,
c = I and 8 = a/5 . It follows that, for k sufficiently large, k < N and
l

	

(log k)l f (k) < (log N )lf (N) . Further

t =
L

	

I

	

I

	

(
	 I

C

log

N)
1 C(1 + e)

log k log log k~~ .

0

It therefore only remains to prove that k < m . We have, for k sufficiently
large,

m ,

	

X

	

E)	 (1+ )(log k) (log w)
exp

	

1

	

4 log w + loglog w + log (1 + E)

F

	

log w
k

	

1 + 2 ) (1 + a/2) log w ) = k.

	

El

For the statement of Theorem 2 we shall require the Dickman function o(u) .
Q(u) is a positive, continuous, non-increasing function defined recursively by

Q(u) = 1 for 0 5 u < 1,

and, for N = 1, 2, . . . ,

Q(u) = g(N) - fN v 1 Q(v - 1) dv for N < u < N + 1 .
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Thus, in particular, o(u) = 1 - log u for 1 < u < 2 . In general there is no
known simple closed form for o(u) (cf. Appendix of [8]) and several authors
[8], [29] have studied the problem of numerically approximating o(u) . As for
explicit bounds, it is easy to show that o(u) < I flu + 1) for u > 1, see for
example Lemma 4.7 of [35], and Buchstab [6] proved that for u > 6,

o(u) > exp (- u(1'og u + loglog u + 6(loglog u)/log u)) .

Further, de Bruijn [4] obtained the following asymptotic result,

o(u) = exp - u log u + loglog u - 1 +
loglog u
log u

where

h(0) = min
1 - 0 log o(u)

I,>_ 1

	

u

For any real number 0 with 0 < 0 < 1 define , f,, (u) for u > 0 by
fju) _ (1 - 0 log o(u))lu . Since o(u) is continuous and 0 < o(u) < 1 for
u > 0, fju) is also continuous and positive for u > 0. Further, by (6) f,,(u)
tends to infinity with u . Thus the minimum of „(j) for u > 1 is attained
and so h(0) is well defined . If we evaluate f;,(u) at u = 1/0 and apply
Buchstab's inequality (5), we find that, for 0 < 1/6,

h(0) < 0(1 + log (1/0) + loglog (1/0) + (6 loglog (110)/log (1/0))) .

(5)

log u + CC l log u
	u

/z )))

	

(6)

THEOREM 2 . Let e and 0 be real numbers with 0 < a < 1 and 0 < 0 < 1 . Let
k and l be positive integers with 2 < l < 0 log k such that k exceeds a number
which is effectively computable in terms (?/'r and 0. Then there exist distinct
positive integers a	a k and distinct non-negative integers b	b,
such that

r
P n 11 (a ; + b;) < k"(°) +r ,

i=1j=1

(7)
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Plainly f(l) = 1 so h(0) < 1 for 0 < 0 S 1 . In fact, if 0 < 1 then
h(0) < 1 . To see this recall that Q(u) = 1 - log u for 1 < u < 2 . Thus, if
u = 1 + 8 with 0 < 8 < 1/2, then

f(1 + S) _ (1 - 0 log (1 - log (1 + a)))/(1 + b)

_ (1 + 0(b + OOI)))/(1 + a),

and so for 8 sufficiently small f) ( 1 + 8) < 1, whence h(0) < 1, for 0 <
0 < 1 . Thus, for 2 < l < 0 log k and 0 < 0 < 1, (7) is an estimate which
is better by a power than the trivial estimate k + l which is realized when
a, = i, b; = j - 1. Certainly (7) also holds with P(nk=, IIl_, (a + b) ))
replaced by w(IIk_, fl ,=, (a ; + b,)) and in this case the trivial upper bound
is n(k + 1). We conjecture that there does not exist a positive real number
7 with 7 < 1 and arbitrarily large integers 1 and k with l > log k for which
there exist distinct positive integers a	ak and distinct non-negative
integers b	b, such that

wC 1111 (a;+bi )~ < (n(k+1»7 .

We are able, however, to make some improvements on the trivial estimate
n(k + 1) for l > log k. In particular, there exist positive real numbers /f
and fl, such that for all sufficiently large integers k there exist positive
integers a,, . . . , a k and b	b, with 1 > (1 + /30 ) log k for which

P C n f1 (ai + b;) I < (1 - f3,) (k + 1),

	

(8)
-Ii=1

hence, by the prime number theorem, for which

co [1 [1 (a; + b ; )~ < n((1 - P,) (k + 1)) _ (1

	

+ o(1))n(k + 1) .
- Ii=1

To prove (8) we shall require the following result of independent interest .
Let 2 = p,, pz , p3 , . . . be the sequence of consecutive prime numbers .

LEMMA 4. There are effectively computable positive real numbers # and n o so
that if n > no then

(Pk+l - Pk) > fln .
n<Pk <Pk+I < 2 n

Pk+ I - Pk>(I+#) log n
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Proof: Let 0 be a positive real number . Let L be the number of indices k with
• < pk < 2n and (1 - O) log n < pk+, - Pk < (1 + 0) log n . It follows
from Lemmas 1 and 2 of [13] that there exists an effectively computable
positive constant c such that L < c0n/log n . By the prime number theorem,
the number of indices k with n < p k < 2n and Pk+1 - Pk ~< (1 - O) log n
is at most (1 + o(1))n/log n - L. This implies that

(Pk+1 - Pk) <
n<Pk<N4 1<2n

Pk+ i -pÁ> < (1 +0) log n

(1 + 0(1))
lo
n
g n - L}

)))

x (1 - 0) log n + L(1 + O) log n

(1 + 0(1))(1 - O)n + 2LO log n < {1 - 0 + 2CO2 + o(I)}n .
(9)

On the other hand, since Pk+1 - Pk = o(n) for n < p k < 2n or
•

	

< pk+ , < 2n, see for example [26], we have

I

	

Pk+I - Pk = (1 + o(1))n .

	

(10)
n<Pk <Pk+l <2n

A comparison of (9) and (10) reveals that

Pk+I - Pk > (O - 2e02 + o(1))n .

n<Pk <Pk+i <2n
N+I - P4 ->(] -I- M 0 9"

For 0 sufficiently small and n sufficiently large we have (O - 2CO2 +
o(1))n > (O/2)n and the result now follows on taking fl = O/2 .

	

El

Suppose now that k is a positive integer, put #2 = fl/2 and as = ((/3/4)/(1 +
/3)) /i and let n be that integer for which (1 + #,)n < k < (1 + #,) (n + 1) .
Let T be the set of integers 1, . . . , n together with the integers m with
• < m < 2n - (1 -l- N2) log n for which the closed interval [m, m +
(1 + #2 ) log n] contains no prime numbers . If j is a subscript such that
• < p, < p i +, < 2n and p, +, - p) > (1 + /3) log n, then all integers in the
open interval (pi , pi + ( pi+ , - pi )(Rl2)l(1 + /3)) belong to T. Hence, by
Lemma 4, T has cardinality at least

\ /

	

\
n + 1 +2 a + 0(1)

	

(i?;+I - Pi)

l

	

~P,+1 -Pi>Q+/i)logn

	

/

> n+Rn / 1 f+2 +0(1)\
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and plainly this exceeds k if k is sufficiently large . Thus we can choose
a	ak from T. Put l = L(1 fi fl,) log n] and bi = j for j = l, . . . , l.
Note that l = (1 + az + 0(1)) log k and that by construction,

P 11 f1 (a, + bi ) I< n+ l =	 1 /~ + o(1) I k,
i-1 j=1

	

1 + N3

hence (8) follows directly .
Let h be a positive integer . We can prove, by appealing to a result of Maier

(see the main theorem of [34]) and employing a similar construction to the
one given above, that there exists a positive number c,,, which is effectively
computable in terms of h, and arbitrarily large integers k and l with
l > c n (log k loglog k loglogloglog k)/(logloglog k)' for which there exist
distinct positive integers a	ak and distinct positive integers b	b,
with

co (
k

	

I

H H (a; + b) ) < 7r(k) - h.
i-1 j=1

On the other hand, perhaps for each positive number e there exists a number
k, (e) such that if k > ko (e) and l > (log k)"' then

r
co (f1 F1 (a ; + bj ) >, 7r(k + 1),

=t ~=1

for any distinct positive integers a,, . . . , ak and distinct positive integers
b	b, . If it is true this conjecture will be very deep .

For the proof of Theorem 2 we shall require the following two lemmas .

LEMMA 5 . Let u be a real number with u >, 1 . Then

~ (x, x"') - xe(u) .

Proof. This result is due to Dickman [12], see also de Bruijn [5] .

LEMMA 6. Let 6 and u be real numbers with 0 < 8 < 1 and 1 < u. Let N and
l be positive integers such that N exceeds a number which is effectively
computable in terms of S and u and such that 2 < l < log N. Put

m = l ((1 - 8)o(u))'~ and t = N1 i°
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Then there exist distinct integers a,, . . . , am in {1, . . . , N} and there exist
integers b	b, with 0 = b, < b 2 < . . . < b, < N such that

r
P ( ~ ~ (a; + b,» < t .

r=1 i=1

Proof : Put W = { 1 < n < N: P(n) <, t} . Then JW = O(N, t) . For N
sufficiently large we have

>/r(N, t) , t > 1 1 .

By Lemma 1 there exist sets A and B of non-negative integers such that
JA

	

(I
W

I
)/(N= ,`), 0 E B, B I = l and A + B 9 W, so in particular

P(a + b) < t for all a c A and b c- B . It remains to prove that JAI > m . We
have, as in (4),

JAI >, (O(N, t)) r ( 1 + 0( 1 ))

lNr- '

Thus, by Lemma 5,

A >,
(No(u) (1 +0(1)))`

lNr- '

	

'

and the result follows .

Proof of Theorem 2 . Suppose that fo (u) _ (1 - B log o(u))lu attains
its minimum value for u , 1 at u = uo . We apply Lemma 6 with
N = r kl ((1 - (s/2))o(uo ))-' _1 , b = a/2 and u = uo . Since Q(u o ) < 1 we
have N , k, whence 2 < l < B log k < log N. Further

m =
rN

	

-~
(1 - (E/2))~~uo)) r)~~uo) r ~ k .

l

Thus, for k sufficiently large in terms of E and 8, there exist distinct integers
a	ak from I], . . . , N } and integers b	b, with 0 = b, <
62 <, * • <b,<Nwith

P / 11 f1 (a, + bi )\ < N'1` .
\i=i i=1 /
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Furthermore,

2 exp
(logk

C1

+ lolgolgogk
- B log (1 - (s/2)) - B log Q(uo)

JJ
.

Since - B log (1 - (a/2)) < - log (1 - (r/2)) < R/4, we have, for k
sufficiently large in terms of a and B,

N'1` < kh(0>+e

as required .

	

El

§2. S-unit equations with many solutions

Let S = { p, , . . . , p,. } be a set of prime numbers . Let a, b and c be non-zero
integers . Then the equation

ax + by = cz

	

(11)

in integers x, y and z which are all composed of primes from S is called

an S-unit equation (over 0). Usually S-unit equations are defined over
algebraic number fields or other finitely generated domains . An extensive
survey on these equations has been given by Evertse et al . [18] .

It follows from the work of Mahler [31] (cf. Lang [27]) that the S-unit
equation (11) has only finitely many solutions in coprime integers x, y, z .
Mahler dealt explicitly with the case a = b = c = 1 . An upper bound for
the number of solutions in this case was given by Lewis and Mahler [28] .

Their bound depends on S. Evertse [16] proved for general a, b, c that the
S-unit equation (11) has at most 3 x 7 2s +3 solutions in coprime integers
x, y, z (see also Silverman [41]) . Generically the number of solutions of
equation (11) is much smaller . S-unit equations split in a natural way into
equivalence classes (cf. [18, 19]) in such a way that it is a trivial matter to
compute all the solutions of an S-unit equation if one knows the solutions
of an equivalent S-unit equation . Further the number of solutions of equiv-

alent S-unit equations are equal . The number of equivalence classes is
infinite, but Evertse et al. [19] proved that, with the exception of only finitely
many equivalence classes, the number of solutions of the S-unit equation
(11) in coprime positive integers x, y, z is at most two . By contrast, it follows
from Theorem 4 that the S-unit equation x + y = z can have at least as
many as exp ((4 + o(1))(s/log s)"') coprime positive solutions and hence
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Evertse's upper bound is not far from the best possible bound. On the basis
of a heuristic computation we think that the truth is in between. We
conjecture that if e. is any positive real number and S the set of the first s
primes then the number of solutions of the S-unit equation x + y = z in
coprime positive integers x, y and z is at least exp (s"") -r ) for s > C, (E) and,
on the other hand, if S is any set of s primes, then the number of solutions
is at most exp (s(2 / 3 ) + r) for s > C2 (E) . Theorem 3 shows that in Theorem 4
one of x and y can be fixed at the cost of replacing exp ((4 - E)(s/log s)' ,1`)
by exp ((2 - E)(s/log S )112) .

THEOREM 3 . Let 2 = p,, pz , . . . be the sequence of prime numbers . Let E be
a positive real number . There exists a positive number s o (E) which is effectively
computable in terms of E such that if s is an integer with s > s o (E) then there
exist positive integers k, and k 2 with

k, < exp (2(s log s)' 12 ), kz < exp ((ss log s)' 12 ),

such that the equation

x - y = k,

has at least exp ((4 - E) (s/log s)' 12 ) solutions in positive integers x and y with
P(xy) < p, and such that the equation

has at least exp ((2 - E)(s/log s)' 12 ) solutions in coprime positive integers x
and y with P(xy) < p, .

THEOREM 4 . Let e be a positive real number . There exists a number s o (E), which
is effectively computable in terms of e, such that if s is an integer larger than
so (E) then there exists a set S of prime numbers with IS I = s for which the
equation

has at least exp ((4 - 8)(s/log s)' 12 ) solutions in coprime positive integers
composed of primes from S .

Proof. Let 0 < E < 1 and let s be so large that the following arguments
hold true. Apply Lemma 3 with c = 1, the positive number 6 to be chosen
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later, f(x) _ (log x)/2, N = Lexp ((2 - 8)(s log s)' 1z)] and l = 2. Then
there exists an integer m, with

4(1 - 6)(s log s)' 1z
m, >, exp (1 - b)

(1+ 6) log s

and there exist integers a	a„,, in {1, . . . , N} and b in }1
N - 1 } such that

P f1 a, (a; + b)) <
(1

- 2 )z s log s .
1-1

Taking x; = a; + b, y; = a; for i = 1, . . . , m, , we obtain a positive
integer k, = b with k, < exp (2(s log sf') and m, solutions x;, y ; of
the equation x - y = k, with P(x;y;) < (1 - 8/2)zs log s , ps , the
last inequality by the prime number theorem . Choosing 6 so small that
4(1 - 6)z (1 + 6)- ' > 4 - E, we obtain

m, > exp {(4 - E)
s

	

zlogs) ~

and the first assertion follows .
For the second statement apply Lemma 3 with c = 4, b to be chosen later,

f(x) _ (log x)/2, N - _ exp ((1 - b)(s log s)' 1z)] and l = 2 . Then there
exists an integer mz with

~(1 - a) 2(1
(1-+

a)(
b)

s
log
log

s
s)' 12

mz , exp

	

(1 + log 2)~

	

(12)

and there exist integers a,, . . . , amz in { l ; . . . , N } and b in { 1__
N - 1 } such that

mz

	

~ 2

P ~ Ha, (a; + b)~
< (1

- 2 ~ s log s < P' .

,

Taking x; = a ; + b, y, = a ; for i = l, . . . , m z we obtain a positive integer
k = b with k < exp ((s log s)' 1z) and m z solutions x ;, y; of the equation
x - y = k with P(x;, y;) <, ps . Let d, = gcd(x;, y ;) for i = 1, . . . , m.
Then d;lk and x;ld;, y;ld; is a solution of x - y = k/d; . The number of
possible values of k/d; is at most the number of positive divisors of k . Since
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k < N, the number of divisors of k does not exceed exp ((1 + (8/2))
(log 2)(log N)/loglog N) (see Theorem 317 of Hardy and Wright [25]) .
Thus there exist positive integers d and k2 = k/d such that the equation
x - y = k2 has at least

i iz
m2 exp - (1 + d) (1 - ~) (los s) 2 log 2)

g

solutions xi ld, y ;/d. Observe that all these solutions are coprime and distinct .
Choose b so small that 2(1 - 8)2 (1 + 8)- '(1 + log 2) - (1 + 6)
(1 - 8)2 log 2 > 2 - e. Then it follows from (12) that the number of
solutions in coprime positive integers of the equation x - y = kz is at least
exp ((2 - 8)(shog s)'/2 ). Since these solutions x, y satisfy 0 < y < x < exp
((shog s)' 12 ) and P(xy) < p s , and moreover kz < k < exp ((s/log s)''2 ), this
completes the proof .

Proof of Theorem 4 . Let 0 < 8 < 1 . By Theorem 3 there exists a number
so(8) which is effectively computable in terms of S such that if s, > so (8)
then there exists a positive integer k, with k, < exp (2(s, /log s, )'/ 2 ) such
that the equation x - y = k, has at least exp ((4 - 8)) (s, /log s, )' 12 )
solutions in positive integers x and y with P(xy) < p,, . We infer that the
number of prime factors of k, does not exceed 4(s, hog S,)'12. Put

S = { p j p prime and p < p,5. á or p l k, } .

Then I SI < s, + 4(s, hog s, )'/ 2 < (1 + 8)s, for s, sufficiently large . We
now choose s, by s, _ Ls(1 + S) - '] . Then BSI 5 s. By making 8 sufficiently
small with respect to e we obtain that the number of solutions, in positive
integers x, y composed of primes from S, of the equation k, + y = x is at
least exp ((4 - 8)(shog s)' 12 ) and, by dividing out the common factor, we
obtain this many distinct solutions in coprime positive integers x, y and z of
the equation x + y = z such that each of x, y and z are composed of primes
from S.

§3 . Thue-Mahler equations with many solutions

Let F(X, Y) be a binary form with integer coefficients of degree n > 3 and
let S = { p, , . . . , p,. } be a set of prime numbers . The equation

F(x, y) = p,' . . . p',s
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in non-negative integers x, y, z	z,, is called a Thue-Mahler equation .
It becomes a Thue equation if z	z, are all fixed. Mahler [30, 31]
proved that if F is irreducible, then equation (13) has at most c' solutions
with x and y coprime where the number c depends only on F. Lewis

and Mahler [28] derived explicit upper bounds for the number of coprime
solutions of (13) in terms of Fand S when Fis a binary form with non-zero

discriminant . Evertse [16] succeeded in deriving an upper bound for the
number of coprime solutions which depends only on n and s. He showed that

if the binary form F is divisible by at least three pairwise linearly indepen-
dent forms in some algebraic number field, then the number of solutions of

(13) in non-negative integers x, y, z	z, with gcd (x, y) = 1 is at most

2 x 7n; ( 2., + 3)

(see also Mahler [33] and Silverman [38, 39]) . Upper bounds for the sol-
utions themselves were provided by Coates [9, 10], Sprindzhuk [42], Györy
[20] and others .

One may wonder how many solutions equation (13) can have . Theorem
5 shows that Evertse's bound cannot be replaced by exp (s'l"/log s) . There

is a wide gap between the bound of Evertse and the one we have given, but
we expect that the bound exp (s'l" /log s) is much closer to the truth than

exp (s), say. In fact, Theorem 5 already applies to the Ramanújan-Nagell

equation

F(x) = F(x, 1) = p,' . . . P,'

However, the polynomial F is not explicitly stated in Theorem 5 . In this
context, it is worthwhile to note the following immediate consequence of
Theorem 4, which even gives a slightly better estimate than that of
Theorem 5 .

COROLLARY . Let a > 0. For s > so (a) there exists a set S = { p	p,}
of prime numbers such that the equation

xy (x + Y) = Pi , . . . ps

has at least exp ((4 - E)(s/log s)'I2 ) solutions in non-negative integers x, y,
z	z,,, with gcd (x, y) = 1 .

The situation becomes entirely different for the Thue equation

F(x, y) = k

	

( 1 4)
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where Fis a binary form as above and k is a non-zero integer. Upper bounds
for the number of solutions of (14) have been given by Davenport and Roth
[11], Silverman [38, 39], Evertse and Györy [17], Bombieri and Schmidt [3]
and others. Upper bounds for the solutions themselves were provided
by Baker [1], Györy and Papp [21, 22] and others. On the other hand,
Silverman [40], extending work of Mahler [32], has shown that there exist
infinitely many cubic binary forms, each with non-zero discriminant, such
that the number of solutions of equation (14) exceeds C(log IkI )2'3 for
infinitely many integers k where C is some positive constant . However, it
may be that there exists a number C, , depending only on n, such that
equation (14) has at most C, solutions in coprime integers x, y .

We now proceed with Theorem 5 .

THEOREM 5 . Let a be a positive number . Let 2 = A, pz , . . . be the sequence
of prime numbers and let Z be an integer with l >, 2. There exists a number
sofa, l) which is effectively computable in terms of a and l such that if s is an
integer with s > s o (a, 1), then there exists a monic polynomial F(X) of
degree Z with distinct roots and with rational integer cooWcients .for which the
equation

F(x) = p,'

	

(15)

has at least

s`~`

	

l
exp (1 2 - a)

(log
s)(r-gIrl

	

(16)

solutions in non-negative integers x, z, , . . . , z s .

Proof. We assume that s is so large that the following arguments hold true .
Apply Lemma 3 with c = 1, f(x) _ (log x)/l, N = Lexp {(1 - 6)
(s log s)'I`}j and the positive number h to be chosen later . Then there exists
an integer m with

(
m

	

(1 - 26)(s log s)'l`
> exp { (1 - 8)	

111

	

log ((1- (611)) (s log s)' `)

exp ( - a) 3	
12(S log s)'

logs
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and positive integers a, , . . . , am and non-negative integers b	bt such
that

m

	

t

	

~

	

b t

p
(i1 j-1
f1 f1 (a i + b,)

	

1-
l

s log s .

By the prime number theorem, the right hand side of (17) does not exceed
p .„ hence all the numbers a i + b, are composed of p	p, Put F(X) _
(X + b,) . . . (X + bt ) . Then we have m solutions of the Diophantine
equation (15) in non-negative integers x, z	z s . Choose 6 so small that
(1 - Ó)3 /- > h - e. Then the number of solutions of equation (15) is at
least (16). El

RENZARK . The polynomial F mentioned in Theorem 5 has the special
property that all its zeros are rational integers . The problem of finding a
comparable lower bound for the number of solutions of (15) remains open
if, for instance, F is irreducible over the rationale .
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