Some Old and New Problems in Combinatorial Geometry

PAUL ERDÖS*

```
Abstract. Let }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}\mathrm{ be n distinct points in a metric space.
Usually we will restrict nourselves to the plane. Denote by D( }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}
the number of distinct distances determined by }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}.\mathrm{ . Assume that
the points are in r-dimensional space. Denote by }\mp@subsup{}{}{1
\[
\mathrm{f}_{\mathrm{r}}(\mathrm{n})=\mathrm{x}_{1}, \min _{n}, x_{\mathrm{n}} \quad \mathrm{D}\left(\mathrm{x}_{1}, \ldots, x_{\mathrm{n}}\right) .
\]
I conjectured more than 40 years ago that \(f_{2}(n)>c_{1} n /(\log n)^{\frac{1}{2}}\). The lattice points show that this if true is best possible. In this paper we discuss problems related to the conjecture and other questions related to this parameter.
```

I wrote many papers with this or similar titles, and will try to avoid repetitions as much as possible.

Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ be n distinct points in a metric space. Usually we will restrict ourselves to the plane. Denote by $D\left(x_{1}, \ldots, x_{n}\right)$ the number of distinct distances determined by $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$. Assume that the points are in r -dimensional space. Denote by

$$
\mathrm{f}_{\mathrm{r}}(\mathrm{n})=\min _{\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}} \mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) .
$$

I conjectured more than 40 years ago that

$$
\begin{equation*}
f_{2}(n)>c_{1} n /(\log n)^{1 / 2} . \tag{1}
\end{equation*}
$$

I offer five hundred dollars for a proof or disproof of (1). The lattice points show that

[^0](1) if true is best possible. Denote by $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}\right)$ the number of distinct distances from x_{i}. Probably for every choice of distinct points $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ in the plane, we have
\[

$$
\begin{equation*}
\max _{1 \leq \mathrm{i} \leq \mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{\mathrm{i}}\right)>c_{2} \mathrm{n} /(\log \mathrm{n})^{1 / 2} \tag{2}
\end{equation*}
$$

\]

and perhaps even

$$
\begin{equation*}
\sum_{i=1}^{n} \mathrm{~d}\left(\mathrm{x}_{\mathrm{i}}\right)>\mathrm{cn}^{2} /(\log \mathrm{n})^{1 / 2} \tag{3}
\end{equation*}
$$

In 1946 I proved $f_{2}(n)>n^{1 / 2}$ and this was improved by L. Moser to $\mathrm{cn}^{2 / 3}$, and in fact both Moser and I proved that $\max _{\mathrm{i}} \mathrm{d}\left(\mathrm{x}_{\mathrm{i}}\right)>\sqrt{\mathrm{n}}$ respectively $\mathrm{cn}^{2 / 3}$. A few years ago Fan
Chung achieved a breakthrough. She proved $\mathrm{f}_{2}(\mathrm{n})>\mathrm{cn}^{5 / 7}$, but she did not prove max $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}\right)>\mathrm{cn}^{5 / 7} . \mathrm{f}_{2}(\mathrm{n})>\mathrm{n}^{3 / 4}$ seems to be the best current result, due to Trotter and Szemerédi (unpublished).

It is not impossible that for every choice of x_{1}, \ldots, x_{n} we in fact have

$$
\max _{i} d\left(x_{i}\right) \geq(1+o(1)) f_{2}(n)
$$

or perhaps even

$$
\max _{1} d\left(x_{i}\right) \geq f_{2}(n)-C
$$

for some absolute constant C. Perhaps the last conjecture is too optimistic.
Let x_{1}, \ldots, x_{n} be a set of distinct points (in the plane) which implements $f_{2}(n)$, i.e., the number of distinct distances $\mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ determined by $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ is $\mathrm{f}_{2}(\mathrm{n})$. Consider all these n-tuples. Is it true that for $n>5$ there are always two such sets which are dissimilar? i.e., there is no similarity transformation which carries one into the other. For $\mathrm{n}=3$ and $\mathrm{n}=5$ the equilateral triangle and the regular pentagon are the only sets which implement $f_{2}(3)=1$ and $f_{2}(5)=2$. Denote by $h(n)$ the largest integer so that any two sets $A_{1}(n)$ and $A_{2}(n)$ which implement $f_{2}(n)$ contain two sets of size $h(n)$ which are similar. The conjecture stated above is that, for $n>5, h(n)<n$. Is it true that $h(n) \rightarrow \infty$ as $n \rightarrow \infty$? At present I cannot exclude the possibility that, for $n>n_{0}, h(n)=2$, i.e., there are two sets x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} both of which implement $f_{2}(n)$ but no triangle $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\ell}\right)$ is similar to any of the triangles $\left(\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}, \mathrm{y}_{\mathrm{L}}\right)$. I think this is unlikely since I expect that for $\mathrm{n}>\mathrm{n}_{0}$ all these sets must contain equilateral triangles.

Another somewhat related problem asks: Let $A(n)$ implement $f_{2}(n)$. For which k must it contain a subset which implements $\mathrm{f}_{2}(\mathrm{k})$? I think that for $\mathrm{k}=3$ and $\mathrm{k}=4$ this must hold, but for $k=5$ and $n>n_{0}$, it fails in the following strong sense. No set $A(n)$ which implements $\mathrm{f}_{2}(\mathrm{n})$ can contain a regular pentagon. I have no guess what happens for $\mathrm{k}>5$. More generally one could ask the following problem: Consider all the sets $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ which can occur as subsets of a set A which implements $\mathrm{f}_{2}(\mathrm{n})$. What are the
possible values of $\mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$, and, in particular, for which n and k is the value of $\mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ uniquely determined.

By the way, I suspect that $A(n)$ must have lattice structure. Perhaps for $n>n_{0}$ it must be a subset of a triangular lattice. Again this conjecture could be completely wrongheaded. A much weaker conjecture would be that if x_{1}, \ldots, x_{n} implements $f_{2}(n)$ then the points can be covered by $\mathrm{cn}^{1 / 2}$ lines. I could not even prove that there is a line which contains $c_{1} n^{1 / 2}$ of the x_{i}.

Many years ago I conjectured and Szemerédi proved that if $D\left(x_{1}, \ldots, x_{n}\right)=o(n)$ then there is a line which contains unboundedly many of the x_{i} 's. In fact he showed that there is such a line which is a perpendicular bisector of two of our x_{1} 's.

It is easy to see that if $\mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{o}(\mathrm{n})$ then for every fixed k there is a subset $\mathrm{x}_{\mathrm{i}_{1}}, \ldots, \mathrm{x}_{\mathrm{i}_{\mathrm{k}}}$ for which

$$
\begin{equation*}
\mathrm{D}\left(\mathrm{x}_{\mathrm{i}_{1}}, \ldots, \mathrm{x}_{\mathrm{i}_{2}}\right) \leq 1+\binom{\mathrm{k}-1}{2} . \tag{4}
\end{equation*}
$$

In fact (4) follows already from the weaker assumption that there is an x_{i} for which $d\left(x_{i}\right)=o(n)$. (4) follows trivially from the fact that there is a circle whose center is x_{i} and which must contain $\geq k$ of our points. $d\left(x_{i}\right)=o(n)$ for one i only of course does not imply that there are three of our points on a line. It is not clear to me that for how many i's must $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{o}(\mathrm{n})$ hold to imply that three of our points are on a line.

Perhaps (4) is best possible. In other words for every fixed k and $n>n_{0}(k)$ there is a set $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ for which $\mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\mathrm{O}(\mathrm{n})$ and for every $3 \leq \ell \leq \mathrm{k}$ and every choice of ℓ points $X_{i_{1}}, \ldots, x_{i_{2}}$ we have

$$
D\left(x_{i_{1}}, \ldots, x_{i_{\ell}}\right) \geq 1+\binom{\ell-1}{2} .
$$

I cannot even prove this for $l=3$, in fact it may fail for $l=3$ but hold for $l=4$. It may be of interest to find out what happens if ℓ can tend to infinity with n . I would expect that if $\mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<\frac{\mathrm{cn}}{(\log n)^{1 / 2}}$, then our set must contain equilateral (or at least isosceles) triangles and four points with $\mathrm{D}\left(\mathrm{x}_{\mathrm{i}_{1}}, x_{\mathrm{i}_{2}}, x_{\mathrm{i}_{3}}, x_{\mathrm{i}_{6}}\right)=2$. I cannot even prove this with 3 instead of 4 . I conjectured long ago that if x_{1}, \ldots, x_{n} is such that any set of four points $\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}\right)$ determines at least five distinct distances then

$$
\mathrm{D}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)>\mathrm{cn}^{2}
$$

If we only assume that $D\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}\right) \geq 4$ for every choice of $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, x_{i_{4}}$, then I expect that this implies

$$
D\left(x_{1}, \ldots, x_{n}\right) / n \rightarrow \infty,
$$

but I know that $\mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)<\mathrm{n}^{1+O(1)}$ is possible. Clearly many related questions can be asked and we leave their formulation to the interested reader.

The following question occurred to me a few weeks ago: Let S_{1} and S_{2} be two sets of distinct points $x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}$. The sets S_{1} and S_{2} do not have to be disjoint. Denote by $\mathrm{d}\left(\mathrm{S}_{1} ; \mathrm{S}_{2}\right)$ the number of distinct distances $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)$. Is it true that

$$
\begin{equation*}
\min _{\mathrm{S}_{1}, \mathrm{~S}_{2}} \mathrm{~d}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right) / \mathrm{f}_{2}(\mathrm{n}) \rightarrow 0 \tag{5}
\end{equation*}
$$

as n tends to infinity? (5) is perhaps of interest for the following reason: By a well known remark of Lenz, (5) certainly holds in 4-dimensions, since there min $\mathrm{d}(\mathrm{S} 1, \mathrm{~S} 2)=$ 1 for every n. For 2 or 3 dimensions (5) is open and quite possibly the answer is negative.

Here is one final problem of this type: Let $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ be n points in the plane, no four on a circle and every circle whose center is one of the x_{i} contains at most two of our points. Clearly for every x_{i} we then have

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}\right) \geq \frac{\mathrm{n}-1}{2}
$$

Is it true that there is an absolute constant c so that

$$
\begin{equation*}
\max _{1 \leq i \leq n} d\left(x_{i}\right)>(1+c) \frac{n}{2} ? \tag{6}
\end{equation*}
$$

I offer 25 dollars for a solution.
We need the assumption that no four of our points are on a circle since otherwise the regular polygon gives a counterexample. Perhaps in fact

$$
\sum_{i=1}^{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{\mathrm{i}}\right)>(1+\mathrm{c}) \frac{\mathrm{n}^{2}}{2}
$$

also holds. It might be of some interest to try to deduce (6) from as weak an assumption as possible. It should certainly hold if we only assume that no k of our points are on a circle where k is independent of n , perhaps this assumption can be weakened further. We also assume that not too many of our points are on a line.

Let S be a set of n points in the plane no three on a line, no four on a circle. Denote by $h(n)$ the largest integer for which such a set determines at least $h(n)$ distinct distances. Pach just told me that $h\left(2^{n}\right) \leq 3^{n}$. The projection of the n-dimensional cube shows this. Perhaps $h(n) / n \rightarrow \infty$, but as far as I know this is still open.

Pach and I now ask: Suppose the n points further satisfy that they do not contain a parallelogram, or that no two lines determined by our n points are parallel. Is it then true that our n points determine $>\mathrm{cn}^{2}$ distances?

To end this paper I discuss some decomposition problems, which are of a set
theoretical character. Assume $\mathrm{c}=\mathrm{N}_{1}$. Can one decompose E_{n}, the n -dimensional Euclidean space, as the union of K_{0} sets S_{n} so that for every n all the distances in S_{n} are distinct? Kakutani and I proved that for $n=1$ the answer is affirmative (but it becomes negative if $c>\mathbb{N}_{1}$). Davies proved that the answer is affirmative for $\mathrm{n}=2$ and Kunen proved it for all n . A few years ago I asked whether such a decomposition is possible for Hilbert spaces. Pósa proved that the answer is negative in the following very strong sense. There is a set S in a Hilbert space of power \AA_{1} so that every subset S_{1} of S with power \aleph_{1} contains an equilateral triangle. $c=\aleph_{1}$ was not needed here. If $c=\aleph_{1}$ is assumed, Posa shows that every subset of power \mathbb{K}_{1} of his set contains an infinite dimensional equilateral simplex. (This was just proved by Kunen in a surprisingly simple way without using $\mathrm{c}=\kappa_{1}$.)

Drop now the assumption $\mathrm{c}=\mathrm{K}_{1}$. Can one decompose E_{n} into countably many sets S_{i} so that none of the S_{i} contain an isosceles triangle? For $\mathrm{n}=1$ the answer is well known to be affirmative, but as far as I know it is open for $\mathrm{n}>1$. Clearly many related questions can be asked.

Here is a Pizier type problem formulated by Nesetril, Rödl and myself: Let S be an infinite set in the plane (or more generally in a metric space). Assume that there is an $\varepsilon>0$ so that for every n and every choice of n points $x_{1}, x_{2}, \ldots, x_{n}$ of S there is a subset $x_{i_{1}}, \ldots x_{i_{m}}$ of these n points with $m>\varepsilon n$ so that all the distances among these m points are distinct. Is it then true that S is the union of a finite number of sets S_{i},

$$
S=\bigcup_{i=1}^{t} S_{i},
$$

where all the distances in S_{i} are distinct? The condition is clearly necessary. Is it also sufficient? Nesetril, Rödl and I have a paper in preparation about problems of this type. The same problem could be asked about decomposition into sets not containing any isosceles triples.

One could ask: Let $|S|=\mathbb{K}_{2}, S \subseteq E_{n}$ (we now assume $c>\mathbb{N}_{1}$). Assume that every subset S_{1} of S of power K_{1} is the union of denumerably many sets $S_{1}{ }^{(i)}, \cup_{i} S_{1}{ }^{(i)}$ $=S_{1}$ so that for every i all the distances in $S_{1}{ }^{(i)}$ are distinct. Does S then have such a decomposition? Kunen just tells me that the answer is negative since his proof gives that every $\mathrm{S}_{1} \subseteq \mathrm{E}_{\mathrm{n}},|\mathrm{S}|=\mathbb{K}_{1}$ has such a decomposition. Assume now $\mathrm{c} \geq \mathcal{N}_{3},|\mathrm{~S}|=\mathcal{N}_{3}$, every subset $S_{1} \subseteq S,\left|S_{1}\right|=K_{2}$ has a decomposition into \mathbb{N}_{0} sets $S_{1}{ }^{(i)}$ so that all the distances in $\mathrm{S}_{1}{ }^{(\mathrm{i})}$ are distinct. Is it then true that S has such a decomposition?

The following sharpening of Kunen's result perhaps holds: One can decompose E_{n} into countably many sets S_{i} so that all the distances in S_{i} are distinct and every distance can occur in only a finite number of the S_{i} 's. (Pósa just proved this for $\mathrm{n} \leq 2$.)

Another interesting new type of decomposition problem was raised by Pach. Let S be a collection of sets in E^{n}. Does there exist a constant $\mathrm{k}(\mathrm{S})$ such that any k -fold
covering of E^{n} by members of S can be split into two coverings? (A system of sets is said to form a k -fold covering of E^{n}, if every point of the space is contained in at least k sets.) Mani and Pach showed that if S is the family of all unit balls then the answer is in the affirmative only if $\mathrm{n}=2$. In this case $\mathrm{k}(\mathrm{S}) \leq 48$, but this bound is probably far from being sharp. Perhaps the most interesting unsolved case in the plane is, when S is the family of all strips, i.e., all regions bounded by two parallel lines. For half planes and, in general, for half-spaces the answer is positive and follows from Helly's Theorem.

One final problem: Let there be given n points in the plane no four on a line.
Determine or estimate the largest $h(n)$ so that one can always find $h(n)$ of them, no three of which are on a line. Trivially $h(n) \geq \sqrt{2 n}$. How far is this from being best possible? More generally one can ask: Let $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ be n points no k on a line. Let $\mathrm{l}<\mathrm{k}$. Determine (or estimate) the largest $h(n ; l, k)$ so that one can always find $h(n ; l, k)$ of them no l on a line.

References

P. Erdös, Problems and results in combinatorial geometry. Discrete geometry and convexity, Annals of the New York Academy of Sciences, Vol. 940, 1-10. This paper contains many references but since the Annals may not be available everywhere I refer to two further papers of mine:

On some problems of elementary and combinatorial geometry, Annali di Mat., Ser 4,103,99-108. Some combinatorial problems in geometry, Lecture Notes in Math, Springer Verlag. Conference held in Haifa, Israel 1978, 46-53.

For a very rich source of problems, see W. O. J. Moser, Problems on extremal properties of a finite set of points, Annals of the New York Academy of Sciences, Vol. 440, 52-69. This paper has very many references. See also a forthcoming booklet of W. Moser and J. Pach, Research problems in discrete geometry. Mimeographed, 1986.
P. Erdös and S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc., $49(1943), 457-461$. The results of Kunen and Pósa are unpublished.
R. O. Davies, Partitioning the plane into denumerably many sets without repeated distances, Proc. Cambridge Phil. Soc. 72 (1972), 179-183, Kunen's paper will soon appear. See also a forthcoming paper of Komjáth and myself.

[^0]: *The Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary.

