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Abstract . In 1978 Rousseau and Sheehan showed that the book-star Ramsey number
r(K(1, 1, m), K1,n-1) = 2n - 1 for n -> 3m - 3 .

We show that this result is true when the star is replaced by an arbitrary tree on n vertices .

I . Preliminaries.
Let G, and G2 be simple graphs without isolated vertices . The Ramsey number

r(G1,G2) is the smallest positive integer p such that coloring each edge of Kp one of
two colors there is either a copy of G1 in the first color or a copy of G2 in the second
color . By tradition, we shall let the colors be R (red) and B (blue) with the resulting
edge-induced subgraphs denoted ()Z) and (B) respectively . Throughout the paper a
colored Kp will always refer to one in which each edge is colored red or blue .

It is well known for a connected graph G2 that

(1)

	

r(G1, G2) ? (X(G1) - 1) (P(G2) - 1) + s(G1), P(G2) > 3 (G1),
where x(GI) is the chromatic number of G1, p(G2) the order of G2, and s(G1) the
chromatic surplus of G1 . Here the chromatic surplus is the smallest number of vertices
in a color class under any X(G1)-coloring of the vertices of G1 . Inequality (1) follows by
coloring red or blue the edges of a complete graph on (X(GI) -1) (p(G2) - 1) +s(G1) -1
vertices such that the blue graph (B) is isomorphic to (X(G1) - 1)Kp(G2 )-l U Ks(G1)-1
and the red graph ()Z) is isomorphic to its complement . Of interest is the case when
inequality (1) is in fact an equality.

Let Tn denote a tree on n vertices and let B,,, denote the graph K(1,1, m) called an
m-book or a book with m pages . In this paper we investigate when equality holds in (1)
with G1 = B ra and G2 = Tn , i.e ., when r(B,,,,T.) = 2n - 1. The more general problem
when G1 is the multipartite graph K(1,1, m1, m2, . . ., mk) and G2 = Tn with n large has
been considered in [2] . In fact the value of r(K(m1 i m2, . . .,mk),Tn ) with n large has
received considerable attention (see [3,4]) .

The following notation will be used . If the graph G has at least (at most) 2 vertices
of a given type, or order at least (at most) é, we write > f(< P) . This symbolism is
adopted to avoid frequent usage of the words `at least' or `at most' . As is customary
[xl (Lx)) will denote the least (greatest) integer > x (< x) . Additional notation will
follow that used in standard texts, e .g ., [1,5] .

Since in this paper we wish to show r(B-,T.) = 2n -1 (for a certain range of values
of m and n) and from (1) r(Bm,T,) > 2n - 1, it will be assumed throughout that
equality follows from showing r(Bra ,T„) < 2n - 1 .
*Research partially supported under NSF grant No . DMS-8603717
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II . The Book Star Ramsey Number .

In [6] it is shown that r(B,,,,Kl,n_1) = 2n-1 when n > 3m-3 . Our main objective
is to show that the star K1,n_1 can be replaced by an arbitrary tree Tn with the same
result . The lengthy argument needed to prove this fact will be deferred to the next
section . In this section we wish to first establish that there is no hope to prove (in
general) that r(B,n , Kl ,n_1) = 2n - 1 for n < 3m - 3 . To see this we introduce a
rectangular coloring of the edges of Kp into the classes R and B as follows : partition
V(Kp) _ {X11, ._XmN} and set [Xij] 2 C B, and

SC
(B if i =i'orj=j'

[X'2' Xi'j'J
R otherwise .

Set M = 3, N = a, and IXijl = b for all i and j. It is easy to check that a rectangular
coloring of E(K3a b) in which both

(2)

	

(a + 2)b < n - 1 and (a - 2)b < m - 1

contains no red B. and no blue K1,,,_l . If a and b are chosen such that the inequalities
of (2) hold and 3ab _> 2n - 1, then Zab < n + m - 2 and 2n - 1 < 3ab < z (n + m - 2)
so that n < 3m - 4 . In such cases the rectangular coloring shows

r(B,n , K1,,,_1) > 3ab + 1 > 2n - 1 with n < 3m - 4 .

For the readers sake we include the counting argument of Rousseau and Sheehan
which proves the book-star Ramsey number mentioned earlier .

Theorem 1[e] . The Ramsey number r(B,n , Kl, n _1) = 2n - 1 for n > 3m - 3 .

Proof: Color K2 n _1 such that (B) contains no Kim-i . Then the red degree of x, dR(x),
satisfies dR (x) > ( 2n - 2) - (n - 2) = n for all vertices x . Thus (R) contains a K3 . Let
{a, b, c} be the set of vertices of this red K3 and let NR (a), NR (b), and NR (c) denote
the red neighbors of a, b and c respectively. Further set A = NR (a) - {b, c}, B =
NR(b) - (NR (a) U {a}) and C = NR (c) - (NR (a) U NR (b)) . If (R) contains no B-, then
each of the following inequalities hold: JAI > n - 2, JBI _> (n - 2) - (m - 2) = n - m and
JCJ > (n - 2) - 2(m - 2) = n - 2m + 2 . Thus if both R ~ B,n and (B) ~ Kl, n _1, then

2n-1=]V(K2n_1)I > 1{a, b, c} U A U B U C]

>3+(n-2)+(n-m)+(n-2m+2) .

This gives n < 3m - 4, a contradiction, and completes the proof.

III . The Book-Tree Ramsey Number .

As mentioned earlier the main objective of the paper is to prove that Theorem 1
holds when the star K1,n _1 is replaced by an arbitrary tree Tn . The proof of this is
lengthy and will be accomplished first for a special case and then in general through the
use of a collection of lemmas .
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Theorem 2 . The Ramsey number r(Bn,,,T„) = 2n - 1 for n > 3m - 3 .
Before proving this theorem when the tree T„ satisfies a special condition we give a

useful lemma.
Lemma 3 . Let Kt be colored such that (R) 0 B. and (B) 0 Tn . Then the red degree of
each of its vertices is < n + m - 2 .
Proof : Suppose there exists a vertex of red degree > n+m-1 . Let this vertex be v and
its red neighborhood NR . If each vertex in NR has > n-1 blue adjacencies in NR, then
the tree T„ can be constructed in NR using only vertices of NR . Hence there exists a
vertex w in NR that has > (n + m - 2) - (n - 2) = m red adjacencies in NR . But then
v and w are red adjacent and are commonly red adjacent to m vertices, contradicting
(R) ~ B,,, .
Proposition 4 . Theorem 2 holds when A(Tn ) > 3n.

Proof: Let K2n_1 be colored and suppose ()Z) 0 B. and (B) ~ Tu . By the last lemma
each vertex in the colored graph has blue degree > (2n - 2) - (n + m - 2) = n - m >
n - (n + 3)/3 = 3n - 1. Also by Theorem 1 (B) contains a star on n - 1 edges . Let x
denote the center of this star . Further let y be the vertex of largest degree in T n , and
let A denote the set of endvertices of T„ adjacent to y .

We first show that the subtree T' _ (V (Tn ) - A) of Tn can be embedded in (B) . Start
this embedding by mapping y to x and extend this map to a maximal subtree T" of T'
in (B) . Observe, since the blue degree of each vertex of the colored graph is > 3n- 1,
that T" contains > 3n vertices . Also since y is not adjacent to any endvertices of T",
> (3n -1)/2 > (n - 2)/3 of these vertices of T" are non-neighbors of y . But the degree
of y is > 3n so y has < (n - 1) - (3 n) = 3n - 1 non-neighbors in V . Hence T" = T'
and V is embedded in (B) with y mapped to x .

The embedding is easily extendable in (B) to all of Tn , since x has n-1 blue neighbors .
This contradicts the supposition (B) 0 Tn , completing the proof .

For the remainder of this section we will assume that T n fails to satisfy the condition
of Proposition 4. Before we continue towards a complete proof of Theorem 2 we outline
the strategy followed. Assuming the colored graph K2n _1 contains neither a red B,n
nor a blue Tn , we will show V(K2n_1) contains disjoint sets X and Y such that (X)
contains all blue forests of order < [3n] and (Y) contains all blue forests of order
< [3nl . Furthermore these forests can be embedded such that each component can be
rooted arbitrarily. Next we show that the tree can be split appropiately to fit its `parts'
into the blue graphs of (X) and (Y), and these parts can be connected by blue edges
from X to Y . This is the essential content of the next three lemmas needed in the proof
of Theorem 2 .
Lemma 5 . Let K2n_1 be colored such that (R) ~ Bn and (B) ~ Tn . Then there exist
disjoint sets of vertices X and Y in the colored graph, JX J > n, JYJ > n - m + 1, such
that the blue degree of each vertex in (X) is > n-m and the blue degree ofeach vertex
in (Y) is > n - 2m + 1 .
Proof: Among all vertices choose one, say w, of largest red degree . Let X denote that set
of red neighbors of w . To see that I X1 > n build a largest subtree T of Tn in (B) . Since
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T is a proper subgraph of T„ there exists a vertex n of T with all its blue adjacencies
to other vertices of T. Thus v has (2n - 1) - (n - 1) = n red adjacencies and JXJ > n .
For convenience assume (XJ = n + t with t > 0 .

Since (R) ~ B,,, each vertex of X has > (n + t - 1) - (m - 1) = n + t - m blue
adjacencies in X . Using this blue degree build a largest blue subtree T' of T„ in (X) and
extend T to a largest blue subtree T' of T„ avoiding vertex w . Note that T' contains all
but < m - 1 vertices of X .

Since T' is a proper subgraph of T,,, one of its endvertices, say z, is red adjacent to
> (2n - 1) - (n - 1) = n vertices with m - 1 of them in X . Hence z is red adjacent to
> n - m + 1 vertices not in X. Let Y denote this set of > n - m + 1 red neighbors of z
lying outside of X. Since (R) ~ B,,, each vertex in Y has m - 1 red adjacencies in Y,
so that each such vertex has > n - 2m + 1 blue degree in (Y) .

Lemma 6. One of the following occurs .
(i) There exists an edge a of T„ such that the two components of T„ - e have orders

(3nj and [3n] respectively.
(ü) There exists a vertex v of T„ such that the components ofT„ -v of order < ( 3nj

contains >- [3n] vertices of T,, .

Proof: Assume (i) does not occur . For e = vu; an edge of T„ let C9 and Cw denote the
components of T„ - e containing vertex v and w respectively. Choose e such that C„
is of minimal order with IV(C„) I > (3n) and JV(C.) I < L3nj . From the minimality of
the order of C„ it is clear that d(v) > 2. Thus let C1, C2, . . ., C, be the components of
C„ - v with each vi in Cz and adjacent to v and IV(Cl)I > IV(C2)1 > . . . > V(Cs)1.
If [3n] > JV(C1)J, then (ü) follows . Thus assume ~V(C1)J > ( 3nj . Since (i) does not
occur we can assume d(v1) > 2. Let Ci,C2 i . . ., C1' be the components of Cl - v1 in
Cl with each w; in Ci' and adjacent to v1 and IV(CI)l > IV(C2)l > . . . >- IV(Ct)I . If
[3n] > IV(C'1)1, then (ü) follows by replacing v by v1, while if V(C1)J > [ 3n] repeat
the last argument replacing Cl by Ci and v1 by wl . After an appropriate number of
repetitions (ü) occurs .

Lemma 7. One of the following occurs.
(i) There exists an edge a of the tree T„ such that the order of each of the components

of T„ - e is < [3n] .
(ü) There exists a vertex v of the tree T„ such that the order of each of the components

ofT„-v is < [ 1 n] .

Proof: Assume (i) does not occur . As in the proof of the last lemma, for e = uv an
edge of T,,, let C„ and C w be the components of T„ - e containing v and w respectively.
Choose a such that C„ is of minimal order with ~V(Cn )J > ( 3nj and IV(C,,,)l < ( 3nj .
Thus d(v) > 2 . Let v1iv2, . . .,v, be the vertices (other than w) adjacent to v . Denote by
Cl, C2, . . ., C, the components of C„ - v with vi E V (Ci) for each i . From the minimality
of JV(C„)J it follows that I V(C,)l < ( 3n] for all i . Also if IV(Cj)l > ( 3nj for some
j, then the components of T - vw would satisfy (i) . Hence the components of T„ - v
satisfy the condition given in (ü) .

We are now in a position to complete the proof of Theorem 2 .
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Proof of Theorem 2: Again suppose that the graph K2„_1 has been colored such that
(R) 0 B,,, and (B) ~ T,, . By Lemma 5 there exists disjoint sets X and Y in the colored
graph, ~XJ > n, JYI > n - m + 1 > n - (3n + 1) + 1 = 3n, such that the blue degree
of each vertex in (X) is > n - m > 3n - 1 and the blue degree of each vertex in (Y) is
> n - 2m + 1 > 3n - 1 . For x E X and y E Y we denote these blue degrees by dx,B (x)
and dy,B(y) respectively. More generally for each vertex z and each set of vertices W
we let dw, B(z) denote the number of blue adjacencies of z in W .

Since ~X J > n and (B) ~ T,,, there exists a pair of vertices x1 i x2 E X that are red
adjacent . But (R) ~ B,,, so that either dy, B(xl) or dYB(x2) is > (JYJ - (m - 1))/2 =
(n - 2m + 2)/2 > n/6. Without loss of generality assume dyB (xl) > n/6 . Also from
the blue degrees of vertices in (X) and (Y) calculated above, it is clear that (X) ((Y))
contains an arbitrary forest in 8 of order < ránl (< r3 n]) with all components rooted
arbitrarily.

From Proposition 4 we assume throughout the proof that A(T„) < 2n. We break
the remainder of the proof into two cases .

Case 1 : There exists a vertex v in T„ such that the largest rn/61 components of
T„ - v of order < 3n contain collectively > [3n] vertices .

Let CL, C2 i . . ., Cr be the components of T„ -v of order < 3n with V (Cl) > V (C2) >
> IV (CI) 1 . We show T„ can be embedded in the blue subgraph of (X U Y) .
Embed v at x1 and since dy,B(xl) > n/6, continue to embed sequentially all vertices

of components Cl, C2 i . . ., CIn / 6 J in the blue subgraph of (Y) until all these vertices
are embedded or until the embedding stops . In the embedding procedure we only use
blue neighbors of xl in Y if no other choices are available . If all the vertices of these
components are embeddable in (Y), being > L3nf in number, the remaining vertices of
the tree are embeddable in the blue subgraph of (X). Thus assume in this embedding
all vertices of C1, C2 i . . ., Cj have been embedded (j > 1) and that the embedding stops
at some vertex wl of Cj+1 . H Vi=1 V(Ci)I > [3 n], then the remainder of the tree
T„ - U;-1 Ci can be embedded in the blue subgraph of (X) .

Thus we assume I U;=1 V (Ci) J < [ 31 n] and that the embedding of the next component
Cj+1 in the blue subgraph of (Y) stops at some vertex wl . Continue this embedding
to a largest subtree T of Cj+1 in the blue subgraph of (Y) . This gives a collection of
endvertices w1, w2, . . .,w, of T which are red adjacent to all vertices of Y - (V(Cl) U
V (C2) U . . . U V (Cj) U V (T)) . Extend this embedding to vertices of X in (8) . Recall
dx,B (x) > án-1 for x E X and IV (Cj+1) l < [3nj, so that the remainder of Cj+1, namely
Cj+l -T, is embeddable in the blue subgraph of (X) or this embedding stops at some
w,,,1 < u < s . But dy, B(y) > 3n-1 implies J V(C1)UV(C2)U . . .UV(Cj)UV(T)l > [3n] .
Hence the embedding can be extended to all T., if the remainder of Cj+l is embeddable
in the blue subgraph of (X) . Thus the embedding stops at vertex w„ and w„ is red
adjacent to all vertices of

(x- (xl)) U (Y - (V(Cl ) U V(C2 ) U . . . U V(Cj) U V(T))] .

Letting a= JV(C1) U V(C2) U . . . UV(Cj) UV(T)J this implies w„ has > (JX I -1)+ JY J -a
red adjacencies .
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From the proof of Lemma 5 we can assume that no vertex in the colored Ken-1 graph
has red degree > IXI . Thus a > IYj - i > 2n - 1. But by assumption I Uj 1 V (C;)I <

[3n] so IV(Cj+1)I > IV(T)J > (3n-1)-(an-1)=3nacontradiction to ~V(Cj+1)I <
L3 n] . This contradiction completes the proof in this case .

Case 2 : Case 1 does not occur .
We first establish for each vertex v in T„ that the largest component of T„ - v is of

order > L3nf . Let there be t nontrivial components in T„ -v . Then if each component
is of order < in], it follows from the fact Case 1 does not occur that t < (n/6)
and that these nontrivial components collectively contain < [3n] - 1 elements . Hence
A(Tn ) > (n - 1) - (L3nf - 1) _> 3n, a contradiction . This establishes what we need,
namely, for each vertex v in T n the largest component of T„ - v is of order > L8 L .

Next observe that if there is an edge e = zw in T„ such that the components of T n -e
have orders L3nl and [3n], respectively, then T„ is embeddable in (B) . This follows by
mapping a to any blue edge from x, to the set Y, and-embedding the large component
of Tn - e in the blue subgraph of (X) rooted at x1 and the smaller component of T„ - e
in the blue subgraph of (Y) appropiately rooted . We therefore assume that Lemma 6
(ü) holds .

Let v the vertex of T„ guaranteed by Lemma 6 (ü) and let Tn - v have compo-
nents C 1i C2 , . . .,Ct with IV (CI)I > IV (C2)1 >_ . . . >_ ~V(C1) 1 . Since Lemma 6 (ü) holds,
IV(C1) J < F 2n) and by what was earlier established L3nf < ~ V(C1)J . Also we may
assume (Y) contains a red edge, otherwise the blue graphs of both (X) and (Y) contain
any rooted blue tree of order < (3nJ which by Lemma 7 implies T„ is embeddable in
the blue graph of (X U Y) . Let y1y2 be a red edge of (Y) .

Since (R) ~ B-, either d(X) 6 (y1) or dg B (y2) is > (JXI-(m-1))/2 = (n-m+l)/2 >

3n. Assume dXB(y1) > 3n .
Consider the vertex v of Tn and the components C1, C2, . . ., Ct of Tn - v given above

with [3n] > V(C1) J > IV(C2)1 > . . . > IV(Ct)I and ~V(C1)J > [ 31 n]. Map v to
y1, embedding C1 in the blue subgraph of (X) such that a minimal number of blue
adjacencies of y, to elements of X are used . Since Case 1 fails to hold, the total number
of vertices in the set of nontrivial components of Tn - v of order < 3n is < L3 n] . But
Lemma 6 (ü) holds so by including an appropriate number of trivial components of T n -v
with all those nontrivial ones of order < 3n, we find a set of vertices with exactly [3n]
elements which can be embedded in the blue subgraph of (Y) and which extends the
embedding of < {v} U V(C1) > described above . Since IV(C1 )I > L3nf, dXB(y1) > 3n
and the blue subgraph of (X) contains all forests of order < [32 n] with arbitrarily rooted
components, the given embedding can be extended in the blue subgraph of (X U Y) to
include all of Tn , a contradiction .

This final contradiction completes the proof of Case 2 and the proof of Theorem 2 .
From Theorem 2 a more general result can be proved by induction .

Theorem 8 . The Ramsey number r(Kt+K,n,Tn ) = t(n-1)+1 for Z > 2 and n > 3m-3 .

Proof: The usual canonical example shows r(Kt + K,n,Tn ) > t(n - 1) + 1 . Thus color
each edge of a Kt(n-1)+, red or blue . By Theorem 2 the result follows for f = 2 . Thus
assume f > 2 and that the result holds for all values < f .
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Build the largest order subtree T of Tn in (B) . If T is a proper subgraph of Tn ,
then there exists a vertex v of T of red degree > (E - 1) (n - 1) + 1 . Denote this set
of red adjacencies of v by NR . But since (B) 0 Tn , the red subgraph of (NR) contains

by assumption the graph Kt_ 1 + Km . This red Kt-1 + R. with vertex v span a red

Kt + K., completing the inductive proof.

IV . Conclusion

The rectangular coloring given in Section II showed that r(B,n,Tn ) > 2n - 1 for
certain n < 3m - 4. It is in fact shown in [6] that r(Kt + Km , Tn ) < t(n - 1) + m and
that equality holds when n - 1 divides m - 1 . Thus it is of particular interest to learn
more about r(Bm,T.) whenever m < n < 3m - 4 .
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