SCIENTIA

Series A: Mathematical Sciences, Vol. 1 (1988), 111-117
Universidad Técnica Federico Santa María
Valparafso, Chile

The Book-Tree Ramsey Numbers

Paul Erdös, R.J. Faudree, C.C. Rousseau, and R.H. Schelp*

Dedicated to Professor Roberto W. Frucht on his 80th birthday
Abstract. In 1978 Rousseau and Sheehan showed that the book-star Ramsey number

$$
r\left(K(1,1, m), K_{1, n-1}\right)=2 n-1 \text { for } n \geq 3 m-3 .
$$

We show that this result is true when the star is replaced by an arbitrary tree on n vertices.

I. Preliminaries.

Let G_{1} and G_{2} be simple graphs without isolated vertices. The Ramsey number $r\left(G_{1}, G_{2}\right)$ is the smallest positive integer p such that coloring each edge of K_{p} one of two colors there is either a copy of G_{1} in the first color or a copy of G_{2} in the second color. By tradition, we shall let the colors be R (red) and B (blue) with the resulting edge-induced subgraphs denoted $\langle R\rangle$ and $\langle B\rangle$ respectively. Throughout the paper a colored K_{p} will always refer to one in which each edge is colored red or blue.

It is well known for a connected graph G_{2} that

$$
\begin{equation*}
r\left(G_{1}, G_{2}\right) \geq\left(\chi\left(G_{1}\right)-1\right)\left(p\left(G_{2}\right)-1\right)+s\left(G_{1}\right), \quad p\left(G_{2}\right) \geq s\left(G_{1}\right), \tag{1}
\end{equation*}
$$

where $\chi\left(G_{1}\right)$ is the chromatic number of $G_{1}, p\left(G_{2}\right)$ the order of G_{2}, and $s\left(G_{1}\right)$ the chromatic surplus of G_{1}. Here the chromatic surplus is the smallest number of vertices in a color class under any $\chi\left(G_{1}\right)$-coloring of the vertices of G_{1}. Inequality (1) follows by coloring red or blue the edges of a complete graph on $\left(\chi\left(G_{1}\right)-1\right)\left(p\left(G_{2}\right)-1\right)+s\left(G_{1}\right)-1$ vertices such that the blue graph $\langle B\rangle$ is isomorphic to $\left(\chi\left(G_{1}\right)-1\right) K_{p\left(G_{2}\right)-1} \cup K_{s\left(G_{1}\right)-1}$ and the red graph $\langle R\rangle$ is isomorphic to its complement. Of interest is the case when inequality (1) is in fact an equality.

Let T_{n} denote a tree on n vertices and let B_{m} denote the graph $K(1,1, m)$ called an m-book or a book with m pages. In this paper we investigate when equality holds in (1) with $G_{1}=B_{m}$ and $G_{2}=T_{n}$, i.e., when $r\left(B_{m}, T_{n}\right)=2 n-1$. The more general problem when G_{1} is the multipartite graph $K\left(1,1, m_{1}, m_{2}, \ldots, m_{k}\right)$ and $G_{2}=T_{n}$ with n large has been considered in [2]. In fact the value of $r\left(K\left(m_{1}, m_{2}, \ldots, m_{k}\right), T_{n}\right)$ with n large has received considerable attention (see $[3,4]$).

The following notation will be used. If the graph G has at least (at most) ℓ vertices of a given type, or order at least (at most) ℓ, we write $\geq \ell(\leq \ell)$. This symbolism is adopted to avoid frequent usage of the words 'at least' or 'at most'. As is customary $\lceil x\rceil(\lfloor x\rfloor)$ will denote the least (greatest) integer $\geq x(\leq x)$. Additional notation will follow that used in standard texts, e.g., $[\mathbf{1 , 5}]$.

Since in this paper we wish to show $r\left(B_{m}, T_{n}\right)=2 n-1$ (for a certain range of values of m and n) and from (1) $r\left(B_{m}, T_{n}\right) \geq 2 n-1$, it will be assumed throughout that equality follows from showing $r\left(B_{m}, T_{n}\right) \leq 2 n-1$.

[^0]
II. The Book Star Ramsey Number.

In [6] it is shown that $r\left(B_{m}, K_{1, n-1}\right)=2 n-1$ when $n \geq 3 m-3$. Our main objective is to show that the star $K_{1, n-1}$ can be replaced by an arbitrary tree T_{n} with the same result. The lengthy argument needed to prove this fact will be deferred to the next section. In this section we wish to first establish that there is no hope to prove (in general) that $r\left(B_{m}, K_{1, n-1}\right)=2 n-1$ for $n<3 m-3$. To see this we introduce a rectangular coloring of the edges of K_{p} into the classes R and B as follows: partition $V\left(K_{p}\right)=\left\{X_{11}, \ldots, X_{M N}\right\}$ and set $\left[X_{i j}\right]^{2} \subseteq B$, and

$$
\left[X_{i j}, X_{i^{\prime} j^{\prime}}\right] \subseteq \begin{cases}B & \text { if } i=i^{\prime} \text { or } j=j^{\prime} \\ R & \text { otherwise } .\end{cases}
$$

Set $M=3, N=a$, and $\left|X_{i j}\right|=b$ for all i and j. It is easy to check that a rectangular coloring of $E\left(K_{3 a b}\right)$ in which both

$$
\begin{equation*}
(a+2) b \leq n-1 \quad \text { and } \quad(a-2) b \leq m-1 \tag{2}
\end{equation*}
$$

contains no red B_{m} and no blue $K_{1, n-1}$. If a and b are chosen such that the inequalities of (2) hold and $3 a b \geq 2 n-1$, then $2 a b \leq n+m-2$ and $2 n-1 \leq 3 a b \leq \frac{3}{2}(n+m-2)$ so that $n \leq 3 m-4$. In such cases the rectangular coloring shows

$$
r\left(B_{m}, K_{1, n-1}\right) \geq 3 a b+1>2 n-1 \quad \text { with } \quad n \leq 3 m-4 .
$$

For the readers sake we include the counting argument of Rousseau and Sheehan which proves the book-star Ramsey number mentioned earlier.
Theorem 1[6]. The Ramsey number $r\left(B_{m}, K_{1, n-1}\right)=2 n-1$ for $n \geq 3 m-3$.
Proof: Color $K_{2 n-1}$ such that $\langle B\rangle$ contains no $K_{1, n-1}$. Then the red degree of $x, d_{R}(x)$, satisfies $d_{\mathcal{R}}(x) \geq(2 n-2)-(n-2)=n$ for all vertices x. Thus $\langle\mathcal{R}\rangle$ contains a K_{3}. Let $\{a, b, c\}$ be the set of vertices of this red K_{3} and let $N_{\mathcal{R}}(a), N_{\mathcal{R}}(b)$, and $N_{\mathcal{R}}(c)$ denote the red neighbors of a, b and c respectively. Further set $A=N_{\mathcal{R}}(a)-\{b, c\}, B=$ $N_{\mathcal{R}}(b)-\left(N_{\mathcal{R}}(a) \cup\{a\}\right)$ and $C=N_{R}(c)-\left(N_{R}(a) \cup N_{\mathcal{R}}(b)\right)$. If $\langle\mathcal{R}\rangle$ contains no B_{m}, then each of the following inequalities hold: $|A| \geq n-2,|B| \geq(n-2)-(m-2)=n-m$ and $|C| \geq(n-2)-2(m-2)=n-2 m+2$. Thus if both $R \nsupseteq B_{m}$ and $\langle B\rangle \nsupseteq K_{1, n-1}$, then

$$
\begin{aligned}
2 n-1=\left|V\left(K_{2 n-1}\right)\right| & \geq|\{a, b, c\} \cup A \cup B \cup C| \\
& \geq 3+(n-2)+(n-m)+(n-2 m+2) .
\end{aligned}
$$

This gives $n \leq 3 m-4$, a contradiction, and completes the proof.

III. The Book-Tree Ramsey Number.

As mentioned earlier the main objective of the paper is to prove that Theorem 1 holds when the star $K_{1, n-1}$ is replaced by an arbitrary tree T_{n}. The proof of this is lengthy and will be accomplished first for a special case and then in general through the use of a collection of lemmas.

Theorem 2. The Ramsey number $r\left(B_{m}, T_{n}\right)=2 n-1$ for $n \geq 3 m-3$.
Before proving this theorem when the tree T_{n} satisfies a special condition we give a useful lemma.
Lemma 3. Let K_{t} be colored such that $\langle R\rangle \nsupseteq B_{m}$ and $\langle B\rangle \nsupseteq T_{n}$. Then the red degree of each of its vertices is $\leq n+m-2$.
Proof: Suppose there exists a vertex of red degree $\geq n+m-1$. Let this vertex be v and its red neighborhood $N_{\mathcal{R}}$. If each vertex in $N_{\mathcal{R}}$ has $\geq n-1$ blue adjacencies in N_{R}, then the tree T_{n} can be constructed in N_{R} using only vertices of N_{R}. Hence there exists a vertex w in N_{R} that has $\geq(n+m-2)-(n-2)=m$ red adjacencies in N_{R}. But then v and w are red adjacent and are commonly red adjacent to m vertices, contradicting $\langle R\rangle \nsupseteq B_{m}$.

Proposition 4. Theorem 2 holds when $\Delta\left(T_{n}\right) \geq \frac{2}{3} n$.

Proof: Let $K_{2 n-1}$ be colored and suppose $\langle R\rangle \nsupseteq B_{m}$ and $\langle B\rangle \nsupseteq T_{n}$. By the last lemma each vertex in the colored graph has blue degree $\geq(2 n-2)-(n+m-2)=n-m \geq$ $n-(n+3) / 3=\frac{2}{3} n-1$. Also by Theorem $1\langle B\rangle$ contains a star on $n-1$ edges. Let x denote the center of this star. Further let y be the vertex of largest degree in T_{n}, and let A denote the set of endvertices of T_{n} adjacent to y.

We first show that the subtree $T^{\prime}=\left\langle V\left(T_{n}\right)-A\right\rangle$ of T_{n} can be embedded in $\langle B\rangle$. Start this embedding by mapping y to x and extend this map to a maximal subtree $T^{\prime \prime}$ of T^{\prime} in $\langle B\rangle$. Observe, since the blue degree of each vertex of the colored graph is $\geq \frac{2}{3} n-1$, that $T^{\prime \prime}$ contains $\geq \frac{2}{3} n$ vertices. Also since y is not adjacent to any endvertices of $T^{\prime \prime}$, $\geq\left(\frac{2}{3} n-1\right) / 2 \geq(n-2) / 3$ of these vertices of $T^{\prime \prime}$ are non-neighbors of y. But the degree of y is $\geq \frac{2}{3} n$ so y has $\leq(n-1)-\left(\frac{2}{3} n\right)=\frac{1}{3} n-1$ non-neighbors in T^{\prime}. Hence $T^{\prime \prime}=T^{\prime}$ and T^{\prime} is embedded in $\langle B\rangle$ with y mapped to x.

The embedding is easily extendable in $\langle B\rangle$ to all of T_{n}, since x has $n-1$ blue neighbors. This contradicts the supposition $\langle B\rangle \nsupseteq T_{n}$, completing the proof.

For the remainder of this section we will assume that T_{n} fails to satisfy the condition of Proposition 4. Before we continue towards a complete proof of Theorem 2 we outline the strategy followed. Assuming the colored graph $K_{2 n-1}$ contains neither a red B_{m} nor a blue T_{n}, we will show $V\left(K_{2 n-1}\right)$ contains disjoint sets X and Y such that $\langle X\rangle$ contains all blue forests of order $\leq\left\lceil\frac{2}{3} n\right\rceil$ and $\langle Y\rangle$ contains all blue forests of order $\leq\left\lceil\frac{1}{3} n\right\rceil$. Furthermore these forests can be embedded such that each component can be rooted arbitrarily. Next we show that the tree can be split appropiately to fit its 'parts' into the blue graphs of $\langle X\rangle$ and $\langle Y\rangle$, and these parts can be connected by blue edges from X to Y. This is the essential content of the next three lemmas needed in the proof of Theorem 2.
Lemma 5. Let $K_{2 n-1}$ be colored such that $\langle R\rangle \nsupseteq B_{n}$ and $\langle B\rangle \nsupseteq T_{n}$. Then there exist disjoint sets of vertices X and Y in the colored graph, $|X| \geq n,|Y| \geq n-m+1$, such that the blue degree of each vertex in $\langle X\rangle$ is $\geq n-m$ and the blue degree of each vertex in $\langle Y\rangle$ is $\geq n-2 m+1$.
Proof: Among all vertices choose one, say w, of largest red degree. Let X denote that set of red neighbors of w. To see that $|X| \geq n$ build a largest subtree T of T_{n} in $\langle B\rangle$. Since
T is a proper subgraph of T_{n} there exists a vertex n of T with all its blue adjacencies to other vertices of T. Thus v has $(2 n-1)-(n-1)=n$ red adjacencies and $|X| \geq n$. For convenience assume $|X|=n+t$ with $t \geq 0$.

Since $\langle\mathcal{R}\rangle \nsupseteq B_{m}$ each vertex of X has $\geq(n+t-1)-(m-1)=n+t-m$ blue adjacencies in X. Using this blue degree build a largest blue subtree T^{\prime} of T_{n} in $\langle X\rangle$ and extend T to a largest blue subtree T^{\prime} of T_{n} avoiding vertex w. Note that T^{\prime} contains all but $\leq m-1$ vertices of X.

Since T^{\prime} is a proper subgraph of T_{n}, one of its endvertices, say z, is red adjacent to $\geq(2 n-1)-(n-1)=n$ vertices with $m-1$ of them in X. Hence z is red adjacent to $\geq n-m+1$ vertices not in X. Let Y denote this set of $\geq n-m+1$ red neighbors of z lying outside of X. Since $\langle R\rangle \nsupseteq B_{m}$ each vertex in Y has $m-1$ red adjacencies in Y, so that each such vertex has $\geq n-2 m+1$ blue degree in $\langle Y\rangle$.

Lemma 6. One of the following occurs.
(i) There exists an edge e of T_{n} such that the two components of $T_{n}-e$ have orders $\left\lceil\frac{2}{3} n\right\rceil$ and $\left\lfloor\frac{1}{3} n\right\rfloor$ respectively.
(ii) There exists a vertex v of T_{n} such that the components of $T_{n}-v$ of order $\leq\left\lfloor\frac{1}{3} n\right\rfloor$ contains $\geq\left\lfloor\frac{1}{3} n\right\rfloor$ vertices of T_{n}.
Proof: Assume (i) does not occur. For $e=v w$ an edge of T_{n} let C_{v} and C_{w} denote the components of $T_{n}-e$ containing vertex v and w respectively. Choose e such that C_{v} is of minimal order with $\left|V\left(C_{v}\right)\right|>\left\lceil\frac{2}{3} n\right\rceil$ and $\left|V\left(C_{w}\right)\right|<\left\lfloor\frac{1}{3} n\right\rfloor$. From the minimality of the order of C_{v} it is clear that $d(v)>2$. Thus let $C_{1}, C_{2}, \ldots, C_{s}$ be the components of $C_{v}-v$ with each v_{i} in C_{i} and adjacent to v and $\left|V\left(C_{1}\right)\right| \geq\left|V\left(C_{2}\right)\right| \geq \ldots \geq\left|V\left(C_{s}\right)\right|$. If $\left\lfloor\frac{1}{3} n\right\rfloor \geq\left|V\left(C_{1}\right)\right|$, then (ii) follows. Thus assume $\left|V\left(C_{1}\right)\right|>\left\lfloor\frac{1}{3} n\right\rfloor$. Since (i) does not occur we can assume $d\left(v_{1}\right)>2$. Let $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{l}^{\prime}$ be the components of $C_{1}-v_{1}$ in C_{1} with each w_{i} in C_{i}^{\prime} and adjacent to v_{1} and $\left|V\left(C_{1}^{\prime}\right)\right| \geq\left|V\left(C_{2}^{\prime}\right)\right| \geq \ldots \geq\left|V\left(C_{\ell}^{\prime}\right)\right|$. If $\left\lfloor\frac{1}{3} n\right\rfloor \geq\left|V\left(C_{1}^{\prime}\right)\right|$, then (ii) follows by replacing v by v_{1}, while if $\left|V\left(C_{1}\right)\right|>\left\lfloor\frac{1}{3} n\right\rfloor$ repeat the last argument replacing C_{1} by C_{1}^{\prime} and v_{1} by w_{1}. After an appropriate number of repetitions (ii) occurs.
Lemma 7. One of the following occurs.
(i) There exists an edge e of the tree T_{n} such that the order of each of the components of $T_{n}-e$ is $\leq\left\lceil\frac{2}{3} n\right\rceil$.
(ii) There exists a vertex v of the tree T_{n} such that the order of each of the components of $T_{n}-v$ is $\leq\left\lfloor\frac{1}{3} n\right\rfloor$.
Proof: Assume (i) does not occur. As in the proof of the last lemma, for $e=u v$ an edge of T_{n}, let C_{v} and C_{w} be the components of $T_{n}-e$ containing v and w respectively. Choose e such that C_{v} is of minimal order with $\left|V\left(C_{n}\right)\right|>\left\lceil\frac{2}{3} n\right\rceil$ and $\left|V\left(C_{w}\right)\right|<\left\lfloor\frac{1}{3} n\right\rfloor$. Thus $d(v)>2$. Let $v_{1}, v_{2}, \ldots, v_{s}$ be the vertices (other than w) adjacent to v. Denote by $C_{1}, C_{2}, \ldots, C_{s}$ the components of $C_{v}-v$ with $v_{i} \in V\left(C_{i}\right)$ for each i. From the minimality of $\left|V\left(C_{n}\right)\right|$ it follows that $\left|V\left(C_{i}\right)\right| \leq\left\lceil\frac{2}{3} n\right\rceil$ for all i. Also if $\left|V\left(C_{j}\right)\right|>\left\lfloor\frac{1}{3} n\right\rfloor$ for some j, then the components of $T-v_{j} v$ would satisfy (i). Hence the components of $T_{n}-v$ satisfy the condition given in (ii).

We are now in a position to complete the proof of Theorem 2.

Proof of Theorem 2: Again suppose that the graph $K_{2 n-1}$ has been colored such that $\langle R\rangle \nsupseteq B_{m}$ and $\langle B\rangle \nsupseteq T_{n}$. By Lemma 5 there exists disjoint sets X and Y in the colored graph, $|X| \geq n,|Y| \geq n-m+1 \geq n-\left(\frac{1}{3} n+1\right)+1=\frac{2}{3} n$, such that the blue degree of each vertex in $\langle X\rangle$ is $\geq n-m \geq \frac{2}{3} n-1$ and the blue degree of each vertex in $\langle Y\rangle$ is $\geq n-2 m+1 \geq \frac{1}{3} n-1$. For $x \in X$ and $y \in Y$ we denote these blue degrees by $d_{X, B}(x)$ and $d_{Y, B}(y)$ respectively. More generally for each vertex z and each set of vertices W we let $d_{W, B}(z)$ denote the number of blue adjacencies of z in W.

Since $|X| \geq n$ and $\langle B\rangle \nsupseteq T_{n}$, there exists a pair of vertices $x_{1}, x_{2} \in X$ that are red adjacent. But $\langle R\rangle \nsupseteq B_{m}$ so that either $d_{Y, B}\left(x_{1}\right)$ or $d_{Y, B}\left(x_{2}\right)$ is $\geq(|Y|-(m-1)) / 2=$ $(n-2 m+2) / 2 \geq n / 6$. Without loss of generality assume $d_{Y, B}\left(x_{1}\right) \geq n / 6$. Also from the blue degrees of vertices in $\langle X\rangle$ and $\langle Y\rangle$ calculated above, it is clear that $\langle X\rangle(\langle Y\rangle)$ contains an arbitrary forest in B of order $\leq\left\lceil\frac{2}{3} n\right\rceil\left(\leq\left\lceil\frac{1}{3} n\right\rceil\right)$ with all components rooted arbitrarily.

From Proposition 4 we assume throughout the proof that $\Delta\left(T_{n}\right)<\frac{2}{3} n$. We break the remainder of the proof into two cases.

Case 1: There exists a vertex v in T_{n} such that the largest $\lceil n / 6\rceil$ components of $T_{n}-v$ of order $\leq \frac{1}{3} n$ contain collectively $\geq\left\lfloor\frac{1}{3} n\right\rfloor$ vertices.

Let $C_{1}, C_{2}, \ldots, C_{\ell}$ be the components of $T_{n}-v$ of order $\leq \frac{1}{3} n$ with $\left|V\left(C_{1}\right)\right| \geq\left|V\left(C_{2}\right)\right| \geq$ $\ldots \geq\left|V\left(C_{\ell}\right)\right|$. We show T_{n} can be embedded in the blue subgraph of $\langle X \cup Y\rangle$.

Embed v at x_{1} and since $d_{Y, B}\left(x_{1}\right) \geq n / 6$, continue to embed sequentially all vertices of components $C_{1}, C_{2}, \ldots, C_{[n / 6]}$ in the blue subgraph of $\langle Y\rangle$ until all these vertices are embedded or until the embedding stops. In the embedding procedure we only use blue neighbors of x_{1} in Y if no other choices are available. If all the vertices of these components are embeddable in $\langle Y\rangle$, being $\geq\left\lfloor\frac{1}{3} n\right\rfloor$ in number, the remaining vertices of the tree are embeddable in the blue subgraph of $\langle X\rangle$. Thus assume in this embedding all vertices of $C_{1}, C_{2}, \ldots, C_{j}$ have been embedded ($j \geq 1$) and that the embedding stops at some vertex w_{1} of C_{j+1}. If $\left|U_{i=1}^{j} V\left(C_{i}\right)\right| \geq\left\lfloor\frac{1}{3} n\right\rfloor$, then the remainder of the tree $T_{n}-U_{i=1}^{j} C_{i}$ can be embedded in the blue subgraph of $\langle X\rangle$.

Thus we assume $\left|\bigcup_{i=1}^{j} V\left(C_{i}\right)\right|<\left\lfloor\frac{1}{3} n\right\rfloor$ and that the embedding of the next component C_{j+1} in the blue subgraph of $\langle Y\rangle$ stops at some vertex w_{1}. Continue this embedding to a largest subtree T of C_{j+1} in the blue subgraph of $\langle Y\rangle$. This gives a collection of endvertices $w_{1}, w_{2}, \ldots, w_{s}$ of T which are red adjacent to all vertices of $Y-\left(V\left(C_{1}\right) \cup\right.$ $\left.V\left(C_{2}\right) \cup \ldots \cup V\left(C_{j}\right) \cup V(T)\right)$. Extend this embedding to vertices of X in $\langle B\rangle$. Recall $d_{X, 8}(x) \geq \frac{2}{3} n-1$ for $x \in X$ and $\left|V\left(C_{j+1}\right)\right|<\left\lfloor\frac{1}{3} n\right\rfloor$, so that the remainder of C_{j+1}, namely $C_{j+1}-T$, is embeddable in the blue subgraph of $\langle X\rangle$ or this embedding stops at some $w_{u}, 1 \leq u \leq s$. But $d_{Y, B}(y) \geq \frac{1}{3} n-1$ implies $\left|V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup \ldots \cup V\left(C_{j}\right) \cup V(T)\right| \geq\left\lfloor\frac{1}{3} n\right\rfloor$. Hence the embedding can be extended to all T_{n}, if the remainder of C_{j+1} is embeddable in the blue subgraph of $\langle X\rangle$. Thus the embedding stops at vertex w_{u} and w_{u} is red adjacent to all vertices of

$$
\left(X-\left\{x_{1}\right\}\right) \cup\left[Y-\left(V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup \ldots \cup V\left(C_{j}\right) \cup V(T)\right)\right] .
$$

Letting $a=\left|V\left(C_{1}\right) \cup V\left(C_{2}\right) \cup \ldots \cup V\left(C_{j}\right) \cup V(T)\right|$ this implies w_{u} has $\geq(|X|-1)+|Y|-a$ red adjacencies.

From the proof of Lemma 5 we can assume that no vertex in the colored $K_{2 n-1}$ graph has red degree $>|X|$. Thus $a \geq|Y|-1 \geq \frac{2}{3} n-1$. But by assumption $\left|U_{i=1}^{j} V\left(C_{i}\right)\right|<$ $\left\lfloor\frac{1}{3} n\right\rfloor$ so $\left|V\left(C_{j+1}\right)\right|>|V(T)| \geq\left(\frac{2}{3} n-1\right)-\left(\frac{1}{3} n-1\right)=\frac{1}{3} n$ a contradiction to $\left|V\left(C_{j+1}\right)\right|<$ $\left\lfloor\frac{1}{3} n\right\rfloor$. This contradiction completes the proof in this case.

Case 2: Case 1 does not occur.
We first establish for each vertex v in T_{n} that the largest component of $T_{n}-v$ is of order $>\left\lfloor\frac{1}{3} n\right\rfloor$. Let there be t nontrivial components in $T_{n}-v$. Then if each component is of order $\leq\left\lfloor\frac{1}{3} n\right\rfloor$, it follows from the fact Case 1 does not occur that $t<\lceil n / 6\rceil$ and that these nontrivial components collectively contain $\leq\left\lfloor\frac{1}{3} n\right\rfloor-1$ elements. Hence $\Delta\left(T_{n}\right) \geq(n-1)-\left(\left\lfloor\frac{1}{3} n\right\rfloor-1\right) \geq \frac{2}{3} n$, a contradiction. This establishes what we need, namely, for each vertex v in T_{n} the largest component of $T_{n}-v$ is of order $>\left\lfloor\frac{1}{3} n\right\rfloor$.

Next observe that if there is an edge $e=z w$ in T_{n} such that the components of $T_{n}-e$ have orders $\left\lceil\frac{2}{3} n\right\rceil$ and $\left\lfloor\frac{1}{3} n\right\rfloor$, respectively, then T_{n} is embeddable in $\langle B\rangle$. This follows by mapping e to any blue edge from x_{1} to the set Y, and embedding the large component of $T_{n}-e$ in the blue subgraph of $\langle X\rangle$ rooted at x_{1} and the smaller component of $T_{n}-e$ in the blue subgraph of $\langle Y\rangle$ appropiately rooted. We therefore assume that Lemma 6 (ii) holds.

Let v the vertex of T_{n} guaranteed by Lemma 6 (ii) and let $T_{n}-v$ have components $C_{1}, C_{2}, \ldots, C_{\ell}$ with $\left|V\left(C_{1}\right)\right| \geq\left|V\left(C_{2}\right)\right| \geq \ldots \geq\left|V\left(C_{\ell}\right)\right|$. Since Lemma 6 (ii) holds, $\left|V\left(C_{1}\right)\right| \leq\left\lceil\frac{2}{3} n\right\rceil$ and by what was earlier established $\left\lfloor\frac{1}{3} n\right\rfloor<\left|V\left(C_{1}\right)\right|$. Also we may assume $\langle Y\rangle$ contains a red edge, otherwise the blue graphs of both $\langle X\rangle$ and $\langle Y\rangle$ contain any rooted blue tree of order $\leq\left\lceil\frac{2}{3} n\right\rceil$ which by Lemma 7 implies T_{n} is embeddable in the blue graph of $\langle X \cup Y\rangle$. Let $y_{1} y_{2}$ be a red edge of $\langle Y\rangle$.

Since $\langle R\rangle \nsupseteq B_{m}$, either $d_{\langle\bar{X}, B}\left(y_{1}\right)$ or $d_{X, B}\left(y_{2}\right)$ is $\geq(|X|-(m-1)) / 2=(n-m+1) / 2 \geq$ $\frac{1}{3} n$. Assume $d_{X, 8}\left(y_{1}\right) \geq \frac{1}{3} n$.

Consider the vertex v of T_{n} and the components $C_{1}, C_{2}, \ldots, C_{\ell}$ of $T_{n}-v$ given above with $\left\lceil\frac{2}{3} n\right\rceil \geq\left|V\left(C_{1}\right)\right| \geq\left|V\left(C_{2}\right)\right| \geq \ldots \geq\left|V\left(C_{\ell}\right)\right|$ and $\left|V\left(C_{1}\right)\right|>\left\lfloor\frac{1}{3} n\right\rfloor$. Map v to y_{1}, embedding C_{1} in the blue subgraph of $\langle X\rangle$ such that a minimal number of blue adjacencies of y_{1} to elements of X are used. Since Case 1 fails to hold, the total number of vertices in the set of nontrivial components of $T_{n}-v$ of order $\leq \frac{1}{3} n$ is $<\left\lfloor\frac{1}{3} n\right\rfloor$. But Lemma 6 (ii) holds so by including an appropriate number of trivial components of $T_{n}-v$ with all those nontrivial ones of order $\leq \frac{1}{3} n$, we find a set of vertices with exactly $\left\lfloor\frac{1}{3} n\right\rfloor$ elements which can be embedded in the blue subgraph of $\langle Y\rangle$ and which extends the embedding of $\left\langle\{v\} \cup V\left(C_{1}\right)>\right.$ described above. Since $| V\left(C_{1}\right) \left\lvert\,>\left\lfloor\frac{1}{3} n\right\rfloor\right., d_{X, B}\left(y_{1}\right) \geq \frac{1}{3} n$ and the blue subgraph of $\langle X\rangle$ contains all forests of order $\leq\left\lceil\frac{2}{3} n\right\rceil$ with arbitrarily rooted components, the given embedding can be extended in the blue subgraph of $\langle X \cup Y\rangle$ to include all of T_{n}, a contradiction.

This final contradiction completes the proof of Case 2 and the proof of Theorem 2.
From Theorem 2 a more general result can be proved by induction.
Theorem 8. The Ramsey number $r\left(K_{\ell}+\bar{K}_{m}, T_{n}\right)=\ell(n-1)+1$ for $\ell \geq 2$ and $n \geq 3 m-3$. Proof: The usual canonical example shows $r\left(K_{\ell}+\bar{K}_{m}, T_{n}\right) \geq \ell(n-1)+1$. Thus color each edge of a $K_{\ell(n-1)+1}$ red or blue. By Theorem 2 the result follows for $\ell=2$. Thus assume $\ell>2$ and that the result holds for all values $<\ell$.

Build the largest order subtree T of T_{n} in $\langle B\rangle$. If T is a proper subgraph of T_{n}, then there exists a vertex v of T of red degree $\geq(\ell-1)(n-1)+1$. Denote this set of red adjacencies of v by $N_{\mathcal{R}}$. But since $\langle B\rangle \nsupseteq T_{n}$, the red subgraph of $\left\langle N_{\mathcal{R}}\right\rangle$ contains by assumption the graph $K_{\ell-1}+\bar{K}_{m}$. This red $K_{\ell-1}+\bar{K}_{m}$ with vertex v span a red $K_{\ell}+\bar{K}_{m}$, completing the inductive proof.

IV. Conclusion

The rectangular coloring given in Section II showed that $r\left(B_{m}, T_{n}\right)>2 n-1$ for certain $n \leq 3 m-4$. It is in fact shown in $[6]$ that $r\left(K_{\ell}+\bar{K}_{m}, T_{n}\right) \leq \ell(n-1)+m$ and that equality holds when $n-1$ divides $m-1$. Thus it is of particular interest to learn more about $r\left(B_{m}, T_{n}\right)$ whenever $m<n \leq 3 m-4$.

References

1. M. Behsad, G. Chartrand, L. Lesniak-Foster, "Graphs and Diagraphs," Wadsworth, Inc., Belmont, California, 1979.
2. S.A. Burr, P. Erdös, R.J. Faudree, R.J. Gould, M.S. Jacobson, C.C. Rousseau, R.H. Schelp, Goodness of Trees for Generalized Books, Graph and Combinatorics 3(1) (1987), 1-6.
3. S.A. Burr, R.J. Faudree, C.C. Rousseau, R.H. Schelp, On Ramsey Numbers Involving Starlike Multipartite Graphs, J. Graph Theory 7 (1983), 395-409.
4. P. Erdōs, R.J. Faudree, C.C. Rousseau, R.H. Schelp, Multipartite Graph-Sparse Graph Ramsey Numbers, Combinatorica 5 (1985), 311-318.
5. F. Harary, "Graph Theory," Addison Wesley, Reading, Mass, 1969.
6. C.C. Rousseau, J. Sheehan, A Class of Ramsey Problems Involving Trees, J. London Math. Soc. (2) 18 (1978), 392-396.

Received February 28, 1987
P. Erdōs, Hungarian Academy of Sciences, P.O.Box 127, Budapest, Hungary H-1364 R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Department of Mathematical Sciences, Memphis State University, Memphis, Tennessee 38152, U.S.A.

[^0]: *Research partially supported under NSF grant No. DMS-8603717

