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NOTE

The Chromatic Number of the Graph of Large
Distances

P . ERDŐS, L . LOVÁSZ and K. VESZTERGOMBI

Let S be a set of n points in R d . Let dl > d2 > . . . > dk > . . . be the distances
between the points in S . We assign the following graph G(S, < k) to the set S . The
vertices of G(S, < k) correspond to the points in S . Two vertices are connected
iff the distance of the corresponding points is at least dk . The authors (1987)
studied the chromatic number X(G(S, < k)) of this graph in the plane . It was
shown that X(G(S, < k)) = 0(k2) for any set S . Furthermore, if n is large enough
(n > const • k 2 ) then X(G(S, < k)) < 7 (independently of k) . Similar results were
proved in the case when the points of S form the vertices of a convex polygon :
then X(G(S, < k)) < 3k, and if n is large enough then X(G(S, < k)) < 3 .

In this paper we study the problem in higher dimension . We give a construction
that shows that without some further assumptions on the points of S the chromatic
number of G(S, < k) can not be bounded independently of k even in 3 dimensions,
no matter how large is n . Then we show that if we assume that no d of the points
of S are contained in a (d - 2)-dimensional affine subspace, and n is large enough,
then the chromatic number of G(S, < k) is bounded by a function f (d) of the
dimension, and show that the best value of f (d) is determined by a basic number
in discrete geometry.

The case when S consists of the vertices of a convex polytope seems to be more
difficult and we can only offer some remarks . Even the case k = 1 is unsolved : The
conjecture that it is at most d+ 1 is the discrete (and quite possibly most difficult)
version of the famous conjecture of Borsuk (1933) . (A sufficiently dense set on
a sphere shows that this bound is can certainly not be improved .) Maybe .the
following is true and even provable without settling first the Borsuk conjecture
(the results mentioned above show that this is true for d = 2) :
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Conjecture . Let h(d) denote the least number for which every compact set in Rd
with diameter 1 can be partitioned into h(d) sets with diameter less than 1 . Let
k > 1 and let S consist of the vertices of a convex polytope in Rd . Assume that
I SI is large enough (depending on d and k) . Then X(G(S, < k)) < h(d) .

Let us return to the "non-convex" case . We start with a construction .

Construction 1. Let the points ui (1 < i < n - k/2) be in the xy-coordinate
plane on a unit circle about the origin . Let the zi (1 < i < k/2) be points on the
z-axis, where zi = (0,0,4%*) (1 < i < k/2) . Then the edges of G(S, < k) are of
the following types : (zi, zj), which determine k/2 different distances, and (uj , zi)
where for a given zi, all the n - k/2 edges are of the same length, and which
therefore determine k/2 further distances . All the other distances are at most 2, so
the k largest distances remain the same for arbitrarily large n . Furthermore, the
vertices zi form a complete graph on k/2 vertices and the ui's are independent, so
X(G(S, < k)) = k/2 + 1 . ∎

Analyzing the above construction, one can notice that there are k/2 points
on a line . So one may hope that if the points of S are in general position, the
chromatic number of G(S, < k) can be bounded . The following theorem shows
that this is indeed the case .

Let g(d) denote the least number of parts into which the d-dimensional unit
ball can be cut so that the diameter of each part is at most 1 . (For estimates on
this number, see Erdős and Rogers (1962) .)

Theorem. Let S be a set of n points in Rd such that no d of its elements are
contained in a d - 2-dimensional subspace and assume that

Then

n > 2(d + 1) d kd .

X(G(S, < k)) < g(d) + d - 1 .

Moreover, for every d > 2 there exists a k and there exist arbitrarily large
(even infinite sets of points in Rd such that no d of their elements are contained
in a d - 2-dimensional subspace and

X(G(S, < k)) = g(d) + d - 1 .

Proof. Let So = S and define the points pi and the sets Si, (1 < i < d- 1) in the
following way : Let pi (1 < i < d - 1) be the point of S connected to the largest
possible number of points in SS _ 1 , and let Si be the set of these points in Si- 1 .
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Let S* = S\{pl, . . . )Pd-,} . Let C be a ball of smallest possible radius r
which contains the points of S* . If r < dk then we construct the coloration easily
as follows. Cut the ball C to g(d) pieces of diameter at most r . These pieces
contain independent vertices of the graph G(S, < k), so they may get one colour
and the remaining pi's can get the remaining d - 1 colors .

So we may suppose that r > dk . It is clear that the convex hull of the points
of S* on the surface of C contains the center c of C . Hence by Carathéodory's
Theorem, there exists a set T C S* of at most d + 1 elements such that already
the convex hull of T contains the center of C . Now it is trivial to see that each
point q in the space is at a distance r or more from some point in T. (Consider the
hyperplane through c perpendicular to the vector q - c : at least one points t E T
must be on the side of this hyperplane opposite to q, and then clearly the distance
of t and q is at least r.) So every point of S is connected to at least one point of
T in the graph G(S, < k) .

Let us notice that

S`I ? d i 1 IS` -i1 '

because pi was chosen in such a way that it was connected to a maximum number
of points in Si_ 1 and there is at least one point in T which is connected to at least

d+1 jSi_ I I points. Since this holds for every i, we have

ISd-1I ! (d+ 1) d-1

and hence there exists a t E T from which at least n/(d + 1)d edges go to Sd-1 •

So Sd_ 1 contains n/(d + 1)d points which are connected to each of p1, . . .,Pd_1
and t . Now each of these points is a point of intersection of d balls, with centers
pi, . . ., pd-1 and t and the radii chosen from the k largest distances in S . Further-
more, the intersection of d balls whose centers are in general position can consists
of at most 2 points. So we can get at most 20 intersection points, but this contra-
dicts the assumption that t was connected to more than n/(d+ 1)d points in Si-,,
if n > 2(d + 1) dkd . So our assumption that r > dk led to a contradiction .

To complete the proof of the theorem we construct a set that shows the
tightness of our bound .

Construction 2. By the definition of g(d), if we cut the unit ball into g(d) - 1
pieces, then at least one piece has diameter larger than 1 .

One can easily show that there exists an e > 0 such that if we cut the unit
ball into g(d) - 1 pieces, then at least one piece has diameter at least 1 + e . Define
the graph

C.= { ( X, y) : N(x, y) >- 1 + 1 }
n
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and let G = UG,, . We have x(G) > g(d) and so by the Erdős-de Bruijn Theorem,
G has a finite subgraph G' with the same chromatic number . But then G' is
contained in G„ for some n, and so X(G,,) > g(d) . So c = 1/n can be chosen .

So if we form the graph whose points are the points of the unit ball, two being
connected if and only if their distance is at least 1 + c, then the chromatic number
of this graph is at least g(d) . By the theorem of Erdős and de Bruijn (1951), this
graph has a finite subgraph with chromatic number at least g(d) . Let So be the
set of vertices of this finite subgraph, and let qo denote the center of the unit ball
in consideration .

Next, construct a regular (d - 1)-dimensional simplex with vertices
qo, ql, . . . , qd-i with all sides 3 . Let k denote the number of distinct distances
not smaller than 1 + e determined by the set So U (q,, . . . ' qd-1 } . Let A be the
set of points which are at a distance of 3 from ql, . . . , qd-1 and at a distance less
than c from qo (A is a little arc of a circle) . Let A' be any subset of A and
S = So U {ql, . . . , qd-1) U A' . Note that all the new distances created by adding
the points in A' are shorter than 1 + c, and hence the k largest distances among
the points of S are precisely those distances not smaller than 1 + c .

We claim that X(G(S, < k)) > g(d) + d - 1 . For, consider any coloration of
this graph . The points ql, . . . , q<i-1 must get different colors and these colors must
also differ from the colors of the rest of the points . Moreover, the points in S must
get at least g(d) distinct colors by the choice of S . This completes the proof .

	

∎
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