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THE SOLUTION TO A PROBLEM OF GRÜNBAUM

BY

PETER SALAMON AND PAUL ERDŐS

ABSTRACT . The paper characterizes the set of all possible values
for the number of lines determined by n points for n sufficiently
large . For (2) (n - k), the lower bound of Kelly and Moser for the
number of lines in a configuration with n - k collinear points is
shown to be sharp and it is shown that all values between Mmn(k)
and Mm.(k) are assumed with the exception of Mm. - I and
Mme - 3 . Exact expressions are obtained for the lower end of the
continuum of values leading down from (2) - 4 . In particular, the
best value of c = 1 is obtained in Erdös' previous expression cn 3/2

for this lower end of the continuum .

In the paper below we characterize for large n the possible values of the
number of connecting lines determined by a set P„ of n points in the plane,
where a connecting line is any straight line containing at least two points of Pn .
This solves a problem posed by B . Grünbaum [5, 6] which asks for the se-
quence of all integers m with the property that some configuration of n

points determine exactly m lines . The approach of the present paper is likely
to prove useful also for the related problems discussed in Grünbaum [6] and
Cordovil [2] .

Besides its significance for combinatorial geometry, the problem is also of
interest as an example to help elucidate the connection between statistical
physics and the "spectrum" of values for a combinatorial problem . In fact the
possible values for n = 22 through n = 28 shown in figure 1 can be seen to bear
a strong resemblance to physical spectra . A similar structure has been observed
for the problem of possible values of the permanent for (0, 1) matrices [3] . This
connection with statistical physics is expected to prove useful in certain
implementations of simulated annealing . In keeping with this analogy, our
analysis proceeds in "bands", where the k-th band consists of those
configurations in which the largest number of collinear points has n - k
elements .

The problem requires a careful analysis only for the case when k is small, i .e .
of order -~Fn or less. For such k, the values for the number of connecting lines
determined by configurations in the k-th band do not overlap with values
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FIGURE 1 - Possible values of m for n between 22 and 28 . The values for different k are shown on
different lines to display the overlap . Below these the overlapped values are shown with each point
fattened to a vertical bar to display the similarity to physical spectra . This figure may be omitting
some m values from the lower end of high k bands .

from other bands . The largest number of lines m in the k-th band, i .e. with
n - k points known to lie on a line, can easily be seen to be Mma(k) _
k(n - k) + (z) + 1, which results when the remaining k points are in general
position . The smallest m in the k-th band is known to be bounded below by
Mmin(k) = k(n - k) - (z) + 1 [7] . Another purpose of the presentation below
will be to show that for (z)

	

(n - k) this lower bound is sharp and that
m assumes all values between Mmin(k) and Mma,(k) with the exception of
Mme - I and Mme - 3 .

For larger k, the bands overlap and all values are assumed up to (Z) except
(z) - I and (z) - 3 . The fact that (z) - I and (z) - 3 do not occur was ob-
served by Grünbaum and follows by noting that if three of the points are col-
linear while the other points are in general position we get (z) - 2 lines while if
two sets of three points are collinear we get (z) - 4 and for four collinear points
we get (z) - 5 . P . Erdős has shown that except for these two values, (z) - 1 and
(z) - 3, all values occur between cn

3i2 and (z) [5] . The best value of c is one of
the results presented below .

The structure of a band for large k still remains elusive. The upper bound
Mm,,(k) holds sharply for all k. Our methods show that the upper portions
of the large k bands except for Mmax(k) - 1 and Mmax(k) - 3 are again
"continua", i.e. include all integers in an interval. The missing, and apparently
difficult, information concerns the minimum value in the bands with large
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values of k . While the bound Mu,in(k) of Kelly and Moser remains valid, it loses
sharpness and eventually becomes negative . For our purposes it will be
sufficient to show that the large k bands overlap and that they do not stretch
down into the discrete region .

We remark that our approach of focusing on the values of m assumed in the
k-th band is far easier than the related question of asking for the minimum
value of m on all bands from some k on. In this direction, Erdös established that
if all the points are not collinear, i .e . k - 1, then they determine at least n lines .
He further conjectured that if no n - 1 of the n points are collinear, then the
resulting configurations define at least 2n - 4 lines . Elliot [4] proved this for
n > 10 while Kelly and Moser [7] proved a more general result to the effect that
if at most n - k points are collinear with n > ( 3(3k - 2)2 + 3k - 1)/2, then
the n points determine at least k(n - k) - (2) + 1 lines. Unfortunately their
restriction on k is too strong to be useful for us . Instead we will make use of
another, more recently proved conjecture of Erdös due to Beck [1, 8] which says
that in any configuration with k > x, the number of connecting lines is greater
than cx(n - x), where c is an absolute constant .
We now proceed to demonstrate our results through a sequence of lemmas .

The key technique employed in the proofs will be to slide points on the "large
line" with n - k points into coincidence with a connecting line determined by
the k points off the line . (See figure 2 .) For convenience in these arguments, we
let P.-k denote the set of points on the large line and Pk denote Pn - P,-k .
We also drop the adjective "connecting" when referring to the lines of Pn .

FIGURE 2 - The configuration which achieves M._(k) with n - k collinear points and k points in
general position. These k points determine (z) lines of intersection with the line of P,_ k and thus
create holes for the points of P,- h to fí11 .

LEMMA 1 . For all 0 - k - n - 2, the maximum number of lines in the k-th
band is M,,,,, (k) = k(n - k) + (z) + 1 . The minimum number of lines is
bounded below by Mnvn(k) = k(n - k) - (z) + 1 .
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PROOF . As stated above, the upper bound is trivial. The lower bound is the
result of Kelly and Moser [7] . Their result follows by counting tie lines of
the configuration, i .e. lines which connect points of Pn_ k and points of Pk . There
are k(n - k) (possibly coincident) tie lines . We can get a bound on the amount
of coincidence between such lines by noting that if a, b E Pk, then they share at
most one tie line. Thus there are at least k(n - k) - (2) distinct tie lines and
thus at least k(n - k) - (2) + 1 connecting lines, counting the large line of the
points in P.-k . Note that, with the usual interpretation that (°) and (z) are zero,
the lemma remains valid for k = 0, and k = 1 .

LEMMA 2 . All values in the k-th band, for n ? k(k + 1)/2, between the larg-
est m value Mn, ax(k) and the smallest m value M,nin(k) are realized except for

Mmax - 1 and Mmax - 3.

PROOF . We argue from the configuration depicted in figure 2 which achieves

Mmax, i.e. one in which the points of Pk are in general position, determining (2)
lines, the points of Pn k are in general position on their line ensuring k(n - k)
tie lines plus the large line of the Pn_ k giving a total of k(n - k) + (2) + 1
lines. We consider the configurations which can be made by moving the points
in Pn_k into special position so as to become coincident with one of the (2) lines
determined by the Pk . Each such move decreases the number of lines by two .
Assuming there are enough points among the Pn_ k to move one on to each of
the (2) lines determined by the points in Pk , then the number of lines decreases
in increments of two to a value M,,,,,(k) - 2(2) = Mn,in(k) .

To get the remaining values we start from a configuration with m = Mmax - 2
obtained by making three points of Pk collinear. Our moves will still consist
only of moving points of Pn _ k into coincidence with lines determined by the Pk.
When a point is brought into coincidence with the line containing three points
of Pk , the number of lines drops by three . When a point is brought into coinci-
dence with one of the other lines determined by exactly two of the Pk , the num-
ber of lines again drops by two . Thus all values of the form (M,nax - 2) - 2j
and (Mu, ax - 2) - 2j - 3 for j = 1, . . . ( 2) - 3 are generated . Except for
M.,ax - 3, all integers between Mmin + 1 and Mn,ax - 2 are of this form .

By comparing M,,, ax(k) and Mmin(k + 1) for small k, we have M,nax(k) <
Mn,in(k + 1) . Eventually, the reverse inequality holds . The transition from the
discrete bands in the low k values to the "continuum" of values up to (2) - 3
occurs with this first overlap. We note here only that such overlap takes place in
the k = [ N/n + 2] band and postpone a careful discussion of this first overlap
until after Lemma 3 which gives some limited information concerning the
structure of the bands for k values beyond n - k(k + 1)/2 .

LEMMA 3 . For n < k(k + 1)/2 and k _" n - 3 all values in the interval between
Mn,ax(k) and Mmax(k) - 2(n - k) are taken on except Mmax - 1 and Mu, ax - 3 .
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PROOF . Same as above except that (Z) ? n - k and thus we run out of points
on Pn k which can be move into coincidence with the (z) lines of the Pk . Thus
these moves can only move us down n - k steps of 2 . Although in this case such
moves do not move us to the bottom of the band, they are sufficient to
demonstrate the overlap between the bands by noting that Mmax(k) - 3
Mmax(k+ 1)-2(n-k) for all k<n-2.

For the bands with k = n - 2 and k = n - 3, these arguments do not give
information about the bands' structure since moving the points of Pn k into
coincidence with the lines of Pk moves us to a configuration belonging to a
different band . The arguments do however suffice to deduce that all values
with the exception of Mma,(k) - 1 and Mmax(k) - 3 between Mmax(k) and
Mm (k) - 2(n - k) occur in some band . In fact for k = n - 2 only the single
value Mmzx(n - 2) _ ( 2) is possible, while for k = n - 3 only values of
the form Mmax(n - 3) - 2j are present .
The problem of the bottoms of these bands need be considered only to show

that they remain sufficiently large to stay out of the discrete region .

LEMMA 4 . For n sufficiently large, any configuration in a band with k >
[-\/n + 2] has more than Mma( [Vn + 2] - 1) lines.

PROOF. On reexamining the result of Kelly and Moser which gives a lower
bound Mmin(k) = k(n - k) - (z) + 1 to the values in a band, we note that
these lower bounds are increasing until k = [ (n + 0.5)/3] . Furthermore, for
k > [Vn + 2], they exceed Mmax( [ Vn + 2] - 1) . Thus we need only worry
about bands with k > n/3 . But by the result of Beck [1] such configurations
must give rise to at least c(n/3)(2n/3) lines which for sufficiently large n exceeds

Mmax( [-\/n + 2] - 1) which grows as n3í2 .

The structure is thus a sequence of non-overlapping bands until k =
[ -\/n + 2] at which time a transition occurs to a continuum of values which
persist until (2) - 4 . The remaining two values at the top are (2) - 2 and
(2) . A careful examination of the first overlap requires us to break the an-
alysis into five cases according to the extent of the overlap between the
k = [ Vn + 2] - 1 band and the k = [ Vn + 2] band. This is conveniently
done by means of the function f(n) _ [~/n + 2] 2 - n < 2 . As illustrated in
figure 3, the values of f lead to the cases

CASE 1 f(n)=2

	

Mm.([-/n+2]-1)-2= Mmin(IVn+2])

CASE 2 f(n) = 1 Mme( [-\/n + 2] - 1) - 1 = Mmin( [ V/n + 2] )

CASE 3 f(n) = 0

	

Mme( [ Vn + 2] - 1) = Mmin( [ Vn + 2] )

CASE 4 f(n) _ -1 Mma( [-\/n + 2] - 1) + 1 = Mmin( [-\/n + 2] )

CASE 5 f (n) < -1 Mme([ 1/n + 2] - 1) + 1 < Mmin( [-\/n + 2] ) .
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CASE 1

CASE 2

CASE 3

CASE 4

CASE 5

FIGURE 3 - Overlap between the k = [-\/n + 2] - l and k = [ Vn + 2] bands illustrating the
five cases .

The last gap before the continuum can therefore be seen to be

Ynin) = 1

M(2
n)
=n

M3
(n) =2n-4

mgnl =2n-2.

[June

From these expressions we obtain the best value of c = 1 in the cn3i2 bound to
the bottom of the continuum proved by Erdös [5] . We can also get the m(n) of
Grünbaum's problem. We first note that for k > 3, the number of values in
a band is 2(2) - 1 . Summing these from 3 to j and adding 4 for the first
three bands we find that there are h(j) = 4 + j (j + 2)(j - 2)/3 values in the
first j + 1 bands for j ? 2 .

For i > 4, we determine a j such that i is between h (j) and h (j + 1) . Provided
the resulting j is less than [ -/n + 2] - 1, we use

For larger j, we again have to distinguish between the five cases .

CASES 1 & 2 continuum = {m ; M,,, ([Vn+2]-1)-3<m< (z)-3}

CASES 3 & 4 continuum = {m;M,,, ([-v/n+2]-1)-1<m< (z)-3}

CASE 5 continuum = { m;M..in([1In+2])-1<m< (2)-3} .

(la) m;")=Mma,,(j)+i-h(j)-2 h(j - 1) < i -h(j) - 2

(lb) m(jn ) = Mn,a,(j) - 2

	

i = h(j) - 1

(lc) mI
~ n) = Mmax(j)

	

i = h(j)
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CASES I & 2. f(n) = [ Vn + 2]2 - n = 1, 2 .

For

h( [-\/n + 2] - 2) < i - h( [-\/n + 2] - 1) - 2

=Mmax([l/n+2]-1)+i-h([ -\/n+2]-1)-2

for

h([-\/n+2]-1)-2<i-~ h([-V/n+2]-1)-3+(z)-M,,, ([JIn+2]-1)
min) = M,,,,,,( [-\/n + 2] - 1) + i - h( [-\/n + 2] - 1) - I,

and finally for

i = h([Vn + 2] - 1) - 2 + (2) - M11 ( [ Vn + 2] - 1)

and for

i = h( [Vn + 2] - 1) - 1 + (z) - Ml, ( [Vn + 2] - 1)

Min) _ ( 2) •
CASES 3 & 4. f(n) _ [Vn + 2] Z - n = -1, 0 .

Formulas (1) apply for j = [-\/n + 2] - 1 .

For

h([-\/n+2]-1)<i!h([-\/n+2]-1)-4+( z)-Mmax([l/n+2]-1)

M(n) =M I ([ -\/n+2]-1)+i-h([,\/n+2]-1),

and finally for

a=h([Vn+2]-1)-3+ (z)-Mri1 ([-\/n+2]-1)

mI
= (2) - 2

and for

i =h([Vn+2]- 1)-2+ (z)-M,,, ([Vn+2]- 1)

Min) _ ( 2) •
CASE 5 . f(n) _ [Vn + 2] 2 - n < -1 .

Formulas (1) apply for j = [ -~/n + 2] - 1 .

m(n)
_ ( n ) - 2
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For

h([l/n+2]-1)<i'h([ vIn+2]-1)-3+(2)-Mmin([vn+2])

Mm)
=Mmm([\n+2]) +i- h([Vn+2]- 1) - 1,

and finally for

i =h([Vn+2]-1)-2+(z)-Mm,([-\/n+2]-1)

m 1n) _ ( z) - 2

and for

10 -

20-

30-

40-

50-

60-

i = h( [ l/n + 2] - 1) - 1 + (2) - Mmax( [ Vn + 2] - 1)

MI(n) - (2)'

These formulas allow us to construct tables of m values for sufficiently large
values of n. A graphic form of such a table is shown in figure 4 where for
purposes of illustrating the trends embodied in these formulas we have ignored
the requirement that n be large . We note that as n varies, the bands show up as
lines of fixed width 2(z) - 1 with slope k. In particular, this implies that they
move apart by 1 for a unit increase in n . Thus if no is case 1, then no + 1 is case 2,

0
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m
0

n
k=0 k=1 k=2

	

k=3 k=4 k=5 k=6 k=7

FIGURE 4 - Values of m versus n showing the structure of the solutions to the large n formulas .
Actual solutions for small n include additional m values .
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FicuRE 5 - Possible values of m for n < 12. Values predicted from formulas for large n are shown
as before ; "extra" values from low end of high k bands are shown crosshatched and elongated .

no + 2 is case 3, n o + 3 is case 4, and n o + j is case 5 for 3 < j
2[ \/n o + 2] + 1 . Another feature which shows up in the figure is that the lines
formed by the top gaps M(n )

ax(k) - 1 of the bands, i .e . m = kn - k2 + c2),
nearly coincide with the tangents m = kn - k2 + ( 2) - 1/8 to the parabola

M = (2)
Although the above gives a complete answer to Grünbaum's problem for

n > n*, it leaves the problem for n < n* open. This case requires a detailed
analysis of the lower end of the high k bands and appears to be difficult. Figure

5 shows an enlargement of the upper corner of figure 4 showing the values of m
for n - 12 . The values predicted from the above formulas for large n are shown

as before, the "extra" values resulting from the low end of high k bands are

shaded and elongated for emphasis. Note that these values are all at the lower
end of the continuum leading down from (z) . The size of n* is unknown but it is
likely to be small .

We close by mentioning a related and possibly more fundamental question,
both from the point of view of combinatorial geometry and from the point of
view of analogies to statistical physics . The question is the characterization
of the density of states for the problem, i .e. to give each of the possible values
with appropriate multiplicities. This could be characterized in a fashion similar
to Grünbaum's problem by asking for all possible values of m for all configura-

tions as a sequence mInc

	

m1+ 1
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