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A bwact. We disprove a conjecture of Leo Moser by showing that (i) for every natural number n and 
0 < a c 2 there is a system of n points on the unit sphere S2 such that the number of pairs at distance 01 
from each other is at least const n log* n (where log* stands for the iterated logarithm function) (ii) for 
every n there is a system of n points on S* such that the number of pairs at distance fi from each other 
is at least const . n4/‘. We also construct a set of n points in the plane in general position (no 3 on a line, 
no 4 on a circle) such that they determine fewer than const . n ‘0s3/‘0s 2 distinct distances, which settles a 
problem of Erdijs. 

1. Points in the plane. In most extremal problems in combinatorial and discrete 
geometry the configurations, arrangements, packings, coverings, etc. which are 
expected or proved to be optimal, are symmetric in one sense or another. In fact, it 
is a major obstacle in the way of the research in this field that very few symmetric 
patterns using a large number of objects are known. Perhaps this is one of the 
reasons why “latticelike” configurations have attracted so much attention in recent 
years, and two leading geometers devoted the last couple of years to writing a 
monograph about “Tilings and Patterns” [GSh]. In spite of the fact that applica- 
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tions in crystallography and coding theory aiso inspired extensive computer searches 
for symmetric configurations, the lack of constructions still remains a general 
characteristic of the field. 

Under these circumstances it is no surprise that so little is known about one of 
the oldest and most important unsolved problems in discrete geometry: Whether or 
not the regular lattice packing is the densest packing of equal balls in 3-dimensional 
Euclidean space. In one of his papers C. A. Rogers made the ironic remark that 
“many mathematicians believe, and all physicists know” that the answer to this 
question is affirmative [RI. The “knowledge” of the physicists originates in their 
belief (so often emphasized by Einstein) that the laws of Nature must be simple, and 
if there existed more economical configurations, then Nature would surely have 
“invented” them. 

In this article we will be concerned with variants of the following questions: 

1. What is the minimum number of distances which a set of n points can 
determine? 

2. How many times can a given distance (Y occur among n points? 

We first consider these questions for sets of points in the plane, Beliefs similar to 
those of the physicists mentioned above led the senior author, more than 40 years 
ago, to state the following conjectures [El]: 

(i) Every set of n points in the plane determines at least tin/ fi distinct 
distances (for some constant ci > 0); 

(ii) The number of times a given distance can occur among n points in the plane 
is at most n1 +c~/*osiogn (for some ca > 0). 

Both bounds are attained for the point system 

{(x, y): 0 < x, y < \/;;, x and y areintegers}, 

i.e., for a & by 6 piece of the integer grid, one of the few known truly symmetric 
configurations in the plane. In the past many serious attempts were made to attack 
these problems (see, e.g. [Ml], [Ch], [JSz], [BS], [SSzT], [ChSzT], [EGS] or the 
surveys [E2], [EP], [MP]), but the gaps between the existing lower and upper bounds 
are still enormous. (Erdos offered 500 dollars for a proof or disproof of (i) or (ii) 
several times.) 

Due to the small number of known instances of regular point systems in the 
plane, fighting against these problems is a little bit like shadow boxing: You do not 
know exactly where the enemy is. The known results in this field reflect the strength 
(and limits) of the weaponry of combinatorics rather than throw any light on the 
geometric structure behind. On the other hand, for similar reasons, we must admit 
that beyond the belief there is very little real evidence supporting the above 
conjectures. 

Even less is known about question 1 under the restriction that the points are in 
general position, i.e. there are no 3 of them on a straight line and no 4 on a circle. 
We shall need some notation. 

Given a set P = { pl, p2,. . . , p,,} of n distinct points and a positive number (Y, 
let 

f( P, o) = # pairs ( pi, p,), i < j, at distance (Y from each other, 

g(P) = # distinct distances determined by pairs of points of P. 
(1) 
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Using this notation, let G(n) = min g(P), where the minimum is taken over all 
n-element point sets P in the plane in general position. Erdos has asked many times 
(see, e.g. [ES]) the following questions: Is it true that 

lim G(n) -‘a 9 
n-r n 

lim G(n) = ()? 
n2 n-+2 

(4 

(‘4 

(Our ignorance in this area is really shocking!) Szemeredi [Sz] observed that 
G(n) 2 (n - 1)/3. (In fact, he conjectures G(n) 2 (n - 1)/2, which would gener- 
alize a theorem of Altman [A]). Our next result answers question (b) in the 
affirmative. 

THEOREM 1. For eoety natural number n, G(n) -c (3/2)n10g3/10g2 < (3/2)dsg5 

Prook First consider the case n = 2k, and let P be the set of all vertices of the 
unit cube in Rk, i.e. all (O,l)-sequences x = (xi, x2,. . . , xk) of length k. Since 
x - x’ is always a (0, + 1, - l)-sequence, the pairs of distinct points belonging to P 
determine 3k - 1 different vectors. These occur in (3k - 1)/2 pairs of opposite 
vectors. 

One can obviously choose a a-dimensional plane n c R k such that the orthogo- 
nal projection of P onto l-I is in general position. The’ projection set P’ also 
determines at most (3k - 1)/2 pairs of opposite vectors, and hence at most this 
many different distances. Thus G(2k) -C 3k/2. 

Now let n be arbitrary. Pick k so that 2k-’ < n < 2k. Since G is clearly 
nondecreasing, we have G(n) < G(2k) < 3k/2. But k -c 1 + logn/log2, so G(n) 
< P/W ~og~/~og2 = (3/2)nw/w 

Note that the same construction was used in [DG] for different purposes. Since 
the points of P’ determine a large number of parallelograms, one cannot resist 
asking the following question: Does there exist a set P of n points in the plane in 
general position, such that P does not contain all the vertices of a parallelogram, 
but g(P), the number of distinct distances determined by P, is o( n2)? 

2. Points on the sphere. What happens if, instead of point systems in the plane, 
we consider point systems on the sphere? The situation here differs from that in the 
plane in two important respects. First, there is nothing analogous to the integer 
lattice, so there are no obvious candidates for the sets which answer questions 1 and 
2. Second, the answer to question 2 will depend on the particular distance (Y. 

Let Sd-’ denote the surface of the d-dimensional unit ball, i.e., 

P-l= ((xl,...,xd): xf+ -*. -tx;= l}. 

More than 20 years ago Leo Moser [M2] (see also [GUI, [MP]) conjectured that 
there exists a constant c such that among any n points on the unit sphere S2 the 
same distance can occur at most cn times, i.e., 

f(P, a) < cn (2) 

for any n-element set P c S2 and for any 0 < (Y < 2. This conjecture was partly 
motivated by a well known result conjectured by V&zsonyi and proved indepen- 
dently by several authors ( 6’ [ ,, [HI, [St]), which states that if P = { pl,. . . , p,) is the 
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vertex set of a 3-dimensional convex polytope and LY = maxt d ; < j ~ ,,I pi - ~~1, then 
f(P, a) < 2n - 2. 

However, our next theorem shows that Moser’s conjecture is false. Let log*n 
denote the minimum integer r such that, starting with n, one has to iterate the 
logarithm function r times to get a value smaller than or equal to 1. 

THEOREM 2. There exist cl, c2 B 0 such that 
(i) for every natural number n and for every 0 =z a < 2 one can jind n points in S2 

with the property that each is at distance a from at least cilog*n others; 
(ii) for every natural number n one can find n points in S2 with the property that 

each is at distance \/r from at least c2n’/3 others. 

Proof. (i) Given any E 2 0, let 

S, = {(x, y, t): x2 + y’ + z2 = 1 and 1.~1 d E}. 

S, is the equator of S2, and SE is called a strip of radius E around the equator. 
Let 0 < a < 2 be fixed. We also fix a small positive E such that 

2JC-7 B a, (3) 
i.e., the diameter of the two circles bounding S, is larger than 01. 

For each k >, 1 we shall construct a point set P on the sphere in which each 
point is at distance (Y from at least k others. Our construction will be recursive. For 
k = 1, let P consist of 2 points on the equator, at distance a from each other. 

To motivate the recursive step, consider the analogous situation in the plane. 
Given a set P in the plane in which each point is at distance CY from at .least k 
others, let P* = P u n(P), where r is a translation by a vector of length OL, chosen 
so that P n r(P) is empty. Then P* provides the desired set for k + 1. This 
doesn’t work on the sphere because there is no isometry which moves every point 
the same distance. Instead, we will replace r by a set of rotations about a fixed axis, 
one for each point of P. 

So suppose that for some k we have a set P = { pl, p2, _ . . , pnCkl} such that each 
pi is at distance OL from at least k others. Assume further that all points of P are in 
a narrow strip around the equator, i.e., P c SECk) for some e(k) < E. Let u and v be 
two antipodal points on the sphere such that u is at distance 6 from the north pole 
(O,O, 1) for some small 6 which will be specified later. We turn S2 around the axis 
uv so as to bring p1 into a new position p; such that Ip1 - p;I = (Y. (Note that, in 
view of (3), this is possible if 6 is sufficiently small.) The rotation of S2 which takes 
p1 into p; and keeps u and v fixed, is denoted by ~7~. 

Let PC’) = P, P(l) = rlPCo). If the sets P(O), P(l), . . . , Pcipl) have already been 
determined for some 1 c i < n(k), then we define P(j) as follows. Let n, denote a 
rotation of S2 around the axis uv for which 1 pi - v;( pi)1 = (Y. Sa 

p(1) = fli( PC@ ” p(l) ” . . . ,upW’), 

Finally, let 
p* = p(O) ” p(l) ” . . . Up(“(k)‘. 

It is now clear that, for a proper choice of 6 and the axis UU, (a) the above 
definitions are correct, i.e., all rr,‘s exist; (b) the sets PC’), P(l), . . . , PCnCk)) are 
pairwise disjoint; (c) there is an E(k + 1) < E such that P* c SECk+l). 
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Set n(k + 1) = n(k)2”IK’. According to (b), we have IP( = 2’-‘]P(O)I for 
1 Q i < n(k), hence ]P*] = n(k + 1). 

It is now a straightforward matter to show that every point of P* is at distance CY 
from at least k + 1 others, which establishes Theorem 2(i) for the numbers n(k). 
The result then follows easily for all n. 

The figure below shows this construction for k = 1. Here P(l) = {pi, a} is 
obtained by applying vi to PC’) = P = { pl, pz ). Then PC2) = { b, p&c, d } is 
obtained by applying rz to P (‘1 u P(l). The following pairs of points are at distance 
a: pIp2, PIP;, pia, ~2~6, bp;, k cd, ad. 

(ii) By a construction due to Erdbs (see, e.g., [Ed Thm. 6.18]), there exists a 
positive constant c2 such that one can pick n/2 points and n/2 lines in the plane, 
with the property that each of the points lies on at least c2n’j3 of the lines and each 
of the lines contains at least c2n ‘I3 of the points. Let 0 be a point outside the plane 
supporting this construction. 

To each point P of the construction we assign the unit vector pointing from 0 to 
P. To each line L of the construction we assign one of the two unit vectors 
perpendicular to the plane determined by 0 and L. This gives n vectors with the 
property that each of them is perpendicular to at least c2n’/3 others. The endpoints 
of these vectors lie on the unit sphere centered at 0 and meet the requirements 
of (ii). 

Note: It follows by the methods used in [EGS] that the bound n1/3 in Theorem 
2(ii) cannot be improved. 

Had Moser’s conjecture (2) been true, it would have implied that any n-element 
point set P on the sphere S2 determines at least const * n different distances. That 
is, using our notation (l), 

g(P) 2 c’n (4) 

with an absolute constant c’. lt is an intriguing open question to decide whether this 
weaker version of Moser’s conjecture is true. 

However, it is not hard to show that (4) cannot hold for all n-element subsets of 
any higher dimensional spheres. 
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THEOREM 3. For eoev d >, 4, there exists a constant cd with the property that for 
infinitely many n one can find an n-element point set P c Sd-’ determining 

n 

k?(P) G 

i 

” log log n 
ifd=4 

,-dn2/(d-2) ifd>4 

different distances. 

We close with’some questions suggested by Theorem 2. 
Our result for fi is stronger than that for other distances, since n1/3 grows faster 

than log*n. Is fi really special, or is there a construction which gives a similar 
result for every 0 -c a < 2? Lacking that, are there such constructions for other 
particular values of cu? (Since \/z is the edge length of a regular octahedron 
inscribed in the unit sphere, perhaps the edge lengths of the other Platonic solids are 
worth investigating.) 

We wish to thank Herbert Edelsbrumrer for some valuable comments. 
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