Additive bases with many representations

by
Paul Erdós (Budapest) and Melvyn B. Nathanson (Bronx, N.Y.)

In additive number theory, the set A of nonnegative integers is an asymptotic basis of order 2 if every sufliciently large integer can be written as the sum of two elements of A. Let $r_{A}(n)$ denote the number of representations of n in the form $n=a+a^{\prime}$, where $a, a^{\prime} \in A$ and $a \leqslant a^{\prime}$. An asymptotic basis A of order 2 is minimal if no proper subset of A is an asymptotic basis of order 2. Erdös and Nathanson [2] proved that if A is an asymptotic basis of order 2 such that $r_{A}(n) \geqslant c \cdot \log n$ for some constant $c>1 / \log (4 / 3)$ and every sufficiently large integer n, then some subset of A is a minimal asymptotic basis of order 2 .

It is an open problem to determine whether the set A must contain a minimal asymptotic basis of order 2 if $r_{A}(n)$ merely tends to infinity as n tends to infinity. This paper contains several results connected with this question. Let $|S|$ denote the cardinality of the set S. For any set A of nonnegative integers, let

$$
S_{A}(n)=\{a \in A \mid n-a \in A\}
$$

be the solution set of n in A. Erdös and Nathanson [3] proved that there exists a probability measure on the space of all sets of positive integers such that, with probability 1 , a random set A has the properties that $r(n) \rightarrow \infty$ and $\left|S_{A}(m) \cap S_{A}(n)\right|$ is bounded for all $m \neq n$. We shall show that the following weaker condition suffices to prove the existence of a minimal asymptotic basis: If $r_{A}(n) \rightarrow \infty$ and if $\left|S_{A}(m) \cap S_{A}(n)\right|<(1 / 2-\delta)\left|S_{A}(n)\right|$ for some $\delta>0$ and all sufficiently large integers m and n with $m \neq n$, then A contains a minimal asymptotic basis. On the other hand, we shall prove that for any integer t there exists an asymptotic basis A of order 2 such that every sufficiently large integer has at least t distinct representations as a sum of two elements of A, but A contains no minimal asymptotic basis of order 2 . The proof will use a refinement of a method applied previously by the authors to construct an asymptotic basis A of order 2 with the property that $A \backslash S$ is an asymptotic basis of order 2 if and only if the set $A \cap S$ is finite [1].

Erdös and Nathanson [4] have recently written a survey of results and open problems concerning minimal asymptotic bases.

Notation. Let A and B be sets of integers. Denote by $A+B$ the set of all integers n of the form $n=a+b$, with $a \in A$ and $b \in B$. Let $2 A=A+A$. Let $S_{A}(n)=\{a \in A \mid n-a \in A\}$, and let $S_{A}^{\prime}(n)=\left\{a \in S_{A}(n) \mid a \geqslant n / 2\right\}$. Then $r_{A}(n)$ $=\left|S_{A}^{\prime}(n)\right|=\left[\left(\left|S_{A}(n)\right|+1\right) / 2\right]$. Let S be any subset of A. We write that " S destroys $n^{\prime \prime}$ if, whenever $n=a+a^{\prime}$ with $a, a^{\prime} \in A$, then either $a \in S$ or $a^{\prime} \in S$. For any real numbers a and b, let $[a, b]$ denote the set of integers n such than $a \leqslant n \leqslant b$.

Lemma 1. Let A be a set of nonnegative integers. If

$$
\left|S_{A}(n) \cap S_{A}(u)\right|<(1 / 2)\left|S_{A}(n)\right|,
$$

then $n \in 2\left(A \backslash S_{A}(u)\right)$.
Proof. If $n \notin 2\left(A \backslash S_{A}(u)\right)$, then $S_{A}(u)$ destroys n, and so $S_{A}(u)$ contains at least one element of each pair $\{a, a\}$ of elements of A such that $a+a^{\prime}=n$. It follows that

$$
\left|S_{A}(n) \cap S_{A}(u)\right| \geqslant r_{A}(n)=\left[\left(\left|S_{A}(n)\right|+1\right) / 2\right] \geqslant \mid S_{A}(n) / / 2,
$$

which contradicts the hypothesis of the lemma.
Theorem 1. Let A be an asymptotic basis of order 2 such that
(i) $r_{A}(n) \rightarrow \infty$ as $n \rightarrow \infty$, and
(ii) there exists $\delta>0$ and N_{0} such that for all $m, n \geqslant N_{0}, m \neq n$,

$$
\left|S_{A}(n) \cap S_{A}(m)\right|<(1 / 2-\delta)\left|S_{A}(n)\right| .
$$

Then A contains a minimal asymptotic basis of order 2 .
Proof. Choose $N_{1} \geqslant N_{0}$ such that $n \in 2 A$ for all $n \geqslant N_{1}$. Choose $a_{1} \in A$ with $a_{1}>N_{1}$. Choose $a_{1}^{\prime} \in A$ with $a_{1}^{\prime}>a_{1}$, and let $u_{1}=a_{1}+a_{1}^{\prime}$. Then $u_{1}>2 N_{1}$ and $a_{1}^{\prime} \in S_{A}^{\prime}\left(u_{1}\right)$. We define the set A_{1} by

$$
A_{1}=\left(A \backslash S_{A}^{\prime}\left(u_{1}\right)\right) \cup\left\{a_{1}^{\prime}\right\}
$$

Then $A_{1} \subseteq A_{0}=A$, and $u_{1}=a_{1}+a_{1}^{\prime}$ is the unique representation of u_{1} as the sum of two elements of A_{1}. Since $a \geqslant u_{1} / 2>N_{1}$ for all $a \in A \backslash A_{1}$, it follows that for $n \leqslant N_{1}$ we have $n \in 2 A_{1}$ if and only if $n \in 2 A$. Let $n>N_{1}$, $n \neq u_{1}$. Since

$$
\left|S_{A}(n) \cap S_{A}\left(u_{1}\right)\right|<(1 / 2-\delta)\left|S_{A}(n)\right|<\left|S_{A}(n)\right| / 2,
$$

it follows from Lemma 1 that $n \in 2\left(A \backslash S_{A}\left(u_{1}\right)\right) \subseteq 2 A_{1}$.
Let $k \geqslant 1$. Suppose that we have constructed a decreasing finite sequence of subsets $A=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \ldots \supseteq A_{k}$ such that $2 A=2 A_{k}$. Suppose also that for $i=1, \ldots, k$ we have constructed integers $a_{i}, a_{i}^{\prime} \in A_{k}$ such that, if we define $u_{i}=a_{i}+a_{i}^{\prime}$, then $u_{1}<\ldots<u_{k}$ and $u_{i}=a_{i}+a_{i}^{\prime}$ is the unique repre-
sentation of u_{i} as the sum of two elements of A_{k}. Finally, we assume that

$$
A_{i-1} \backslash A_{i} \subseteq S_{A}^{\prime}\left(u_{i}\right)
$$

for $i=1, \ldots, k$.
Choose τ such that $0<\tau<2 \delta$. Since $r_{A}(n) \rightarrow \infty$, there exists $M>u_{k}$ such that $r_{A}(n)>(1 / \tau) \sum_{i=1}^{k} r_{A}\left(u_{i}\right)$ for all $n \geqslant M$. Choose $a_{k+1} \in A_{k}$ such that $a_{k+1} \leqslant u_{k}$. We shall shortly impose an additional condition on the choice of a_{k+1}. Choose $a_{k+1}^{\prime} \in A_{k}$ such that $a_{k+1}^{\prime}>2 M$, and define $u_{k+1}=a_{k+1}+a_{k+1}$. Then $u_{k+1}>2 M>2 u_{k}$ and $a_{k+1}^{\prime} \in S_{A}^{\prime}\left(u_{k+1}\right) \cap A_{k}$. Define the set $A_{k+1} \subseteq A_{k}$ by

$$
A_{k+1}=\left(A_{k} \backslash S_{A}^{\prime}\left(u_{k+1}\right)\right) \cup\left\{a_{k+1}^{\prime}\right\}
$$

Then $u_{k+1}=a_{k+1}+a_{k+1}$ is the unique representation of u_{k+1} as the sum of two elements of A_{k+1}.

We shall show that $2 A_{k+1}=2 A$. Since $2 A=2 A_{k}$, it suffices to show that $2 A_{k+1}=2 A_{k}$. Note that $u_{k+1} / 2>M$, hence

$$
\begin{equation*}
A_{k} \backslash A_{k+1} \subseteq S_{A}\left(u_{k+1}\right) \subseteq\left[M+1, u_{k+1}\right], \tag{1}
\end{equation*}
$$

and so, if $n \leqslant M$, then $n \in 2 A_{k+1}$ if and only if $n \in 2 A_{k}$. Let $n>M, n \neq u_{k+1}$. Then $n \in 2 A_{k}$. Let $R(n)$ (resp. $R^{\prime}(n)$) denote the number of representations of n as a sum of two elements of A_{k} (resp. A_{k+1}). We must show that $R^{\prime}(n)>0$. Since

$$
A \backslash A_{k} \subseteq \bigcup_{i=1}^{k} S_{A}^{\prime}\left(u_{i}\right)
$$

it follows that

$$
r_{A}(n) \leqslant R(n)+\sum_{i=1}^{k}\left|S_{A}^{\prime}\left(u_{i}\right)\right|=R(n)+\sum_{i=1}^{k} r_{A}\left(u_{i}\right)<R(n)+\tau r_{A}(n),
$$

and so $R(n)>(1-\tau) r_{A}(n)$ for $n>M$. By (1), the number of representations of n as a sum of two elements of A_{k} that are not representations of n as a sum of two elements of A_{k+1} is at most

$$
\begin{aligned}
\left|S_{A}(n) \cap\left(A_{k} \backslash A_{k+1}\right)\right| & \leqslant\left|S_{A}(n) \cap S_{A}^{\prime}\left(u_{k+1}\right)\right| \leqslant\left|S_{A}(n) \cap S_{A}\left(u_{k+1}\right)\right| \\
& <(1 / 2-\delta)\left|S_{A}(n)\right| \\
& \leqslant(1 / 2-\delta) 2 r_{A}(n)=(1-2 \delta) r_{A}(n)
\end{aligned}
$$

This implies that

$$
\begin{aligned}
R^{\prime}(n) & \geqslant R(n)-(1-2 \delta) r_{A}(n) \\
& >(1-\tau) r_{A}(n)-(1-2 \delta) r_{A}(n)=(2 \vec{\delta}-\tau) r_{A}(n)>0
\end{aligned}
$$

and so $n \in 2 A_{k+1}$ for all $n>M$. This completes the induction.

Let $A^{*}=\bigcap_{k=0}^{\infty} A_{k}$. Then $2 A^{*}=2 A$ and so A^{*} is an asymptotic basis of order 2. Moreover, $u_{k}=a_{k}+a_{k}^{\prime}$ is the unique representation of u_{k} as the sum of two elements of the set A^{*},

In order for A^{*} to be a minimal asymptotic basis of order 2 , we impose the following additional condition on the choice of the integers a_{k} : If $a \in A^{*}$, then $a=a_{k}$ for infinitely many k. This means that for any $a \in A^{*}$ there will be intinitely many integers u_{k} such that $u_{k} \notin 2\left(A^{*} \backslash\left\{a_{1}^{\prime}\right)\right.$. Thus, A^{*} is minimal. This completes the proof.

Lemma 2. Let $I=[a, b]$ and $J=[c, d]$, where $b \leqslant c$. Let $k \geqslant 1$. If $m \in[a$ $+c+k-1, b+d-k+1]$, then m has at least k representations in the form m $=x+y$, where $x \in I, y \in J$, and $x \leqslant y$. If $n \in[2 a+2 k-2,2 b-2 k+2]$, then n has at least k representations in the form $n=x+y$, where $x, y \in I$, and $x \leqslant y$.

Proof. Since $[a+c+k-1, b+d-k+1]=[a+k-1, b]+[c, d-k+1]$, it follows that $m=x+y$, where $x \in[a+k-1, b]$ and $y \in[c, d-k+1]$, hence $x \leqslant y$. Then $m=(x-i)+(y+i)$, where $x-i \in I=[a, b], y+i \in J=[c, d]$, and $x-i \leqslant y+i$ for $i=0,1, \ldots, k-1$.

Since $[2 a+2 k-2,2 b-2 k+2]=[a+k-1, b-k+1]+[a+k-1, b-k+1]$. it follows that $n=x+y$, where $x, y \in[a+k-1, b-k+1]$ and $x \leqslant y$, hence n $=(x-i)+(y+i)$, where $x-i, y+i \in I$ and $x-i \leqslant y+i$ for $i=0,1, \ldots, k-1$. This completes the proof.

Lemma 3. Let $n_{0} \leqslant n_{1} \leqslant n_{2} \leqslant \ldots$ be a sequence of pasitive integers such that $n_{k-1} \geqslant 3 k^{2}+6 k+1$ and $n_{k} \geqslant 8 n_{k-1}$ for $k \geqslant 1$. Let $N_{k}=2 n_{k}+1$. For each $k \geqslant 1$, define the following sets of integers:

$$
\begin{aligned}
& P_{k}=\left[N_{k-1}+1, n_{k}-N_{k-1}\right], \\
& Q_{k}=\left\{n_{k}-n_{k-1}-3 k u+1 \mid u=1,2, \ldots, k+1 ;\right. \\
& \left.R_{k}=\left[n_{k}+1, n_{k}+N_{k-1}\right] \backslash n_{k}+n_{k-1}+3 k u \mid u=1,2, \ldots, k+1\right\} .
\end{aligned}
$$

Let $B_{k}=P_{k} \cup Q_{k} \cup R_{k}$ and $B=\bigcup_{k=1}^{\infty} B_{k}$. Then
(i) $N_{k} \not \ddagger 2 B$ for $k \geqslant 0$, and
(ii) If $k \geqslant 3$ and $n \in\left[N_{k-1}+1, N_{k}-1\right]$, then n has at least k representations in the form $n=u+v$, where $u, v \in B_{k} \cup B_{k-1} \cup B_{k-2}$.

Proof. (i) Since the smallest element of B is $N_{0}+1$, it is clear that $N_{0} \notin 2 B$. Let $k \geqslant 1$. Note that

$$
B \cap\left[N_{k-1}+1, n_{k}\right]=P_{k} \cup Q_{k}
$$

and

$$
B \cap\left[n_{k}+1, N_{k}\right]=B \cap\left[n_{k}+1, n_{k}+N_{k-1}\right]=R_{k} .
$$

If $N_{k}=2 n_{k}+1=c+d$, where $0 \leqslant c \leqslant d$, then $c \leqslant n_{k}$ and $d \geqslant n_{k}+1$. If $c \in B$ and $c \notin Q_{k}$, then $c \leqslant n_{k}-N_{k-1}$ and so $N_{k} \geqslant d=N_{k}-c \geqslant n_{k}+N_{k-1}+1$. Since $B \cap\left[n_{k}+N_{k-1}+1, N_{k}\right]=\emptyset$, it follows that $d \notin B$. If $c \in Q_{k}$, then c $=n_{k}-n_{k},-3 k u+1$ for some $u \in[1, k+1]$, hence $d=N_{k}-c=n_{k}+n_{k-1}$ $+3 k u \in\left[n_{k}+1, N_{k}\right]$. Since $d \notin R_{k}$, it follows that $d \notin B$ and so $N_{k} \notin 2 B$.
(ii) Let $k \geqslant 3$. We apply Lemma 2 to the set P_{k}. If

$$
\begin{equation*}
n \in\left[2 N_{k-1}+2 k, N_{k}-2 N_{k-1}-2 k+1\right], \tag{2}
\end{equation*}
$$

then n has at least k distinct representations as the sum of two elements of P_{k}

Define the sets S_{k} and T_{k} by

$$
S_{k}=\left[n_{k}+1, n_{k}+n_{k-1}+k+1\right] . \quad T_{k}=\left[n_{k}+n_{k-1}+3 k(k+1)+1, n_{k}+N_{k-1}\right] .
$$

Then $S_{k} \cup T_{k} \leq R_{k}$. Since

$$
N_{k-1}+n_{k}+n_{k-1}+3 k(k+1)+k+1 \leqslant N_{k}-2 N_{k-1}-2 k+2,
$$

it follows from Lemma 2 , applied to the sets P_{k} and T_{k}, that if

$$
\begin{equation*}
n \in\left[N_{k}-2 N_{k-1}-2 k+2, N_{k}-k\right] \tag{3}
\end{equation*}
$$

then n has at least k distinct representations in the form $n=x+y$, where $x \in P_{k}$ and $y \in T_{k} \subseteq R_{k}$. Similarly. Lemma 2, applied to the set S_{k-1}, implies that if

$$
\begin{equation*}
n \in\left[N_{k-1}+2 k-1, N_{k-1}+N_{k-2}\right] \tag{4}
\end{equation*}
$$

then n has at least k distinct representations as the sum of two elements of S_{k-1}. Finally, Lemma 2 , applied to the sets P_{k} and P_{k-2}, shows that if

$$
\begin{align*}
& n \in\left[N_{k-1}+N_{k-2}+1,2 N_{k-1}+2 k-1\right] \tag{5}\\
& \leqq\left[N_{k-1}+N_{k-3}+k+1, n_{k}-N_{k-1}+n_{k-2}-N_{k-3}-k+1\right]
\end{align*}
$$

then n has at least k distinct representations in the form $n=x+y$, where $x \in P_{k}, y \in P_{h-2}$. From (2) (5), we conclude that if $n \in\left[N_{k-1}+2 k-1, N_{k}-k\right]$, then n has at least k distinct representations as a sum of two elements of $B_{k} \cup B_{k-1} \cup B_{h-2}$ 。

Let $n \in\left[N_{k}-k+1, N_{k}-1\right]$. Then $n=N_{k}-w$ for some $w \in[1, k-1]$ and

$$
n=\left(n_{k}-n_{k-1}-3 k u+1\right)+\left(n_{k}+n_{k-1}+3 k u-w\right) \in Q_{k}+R_{k} \subset 2 B_{k}
$$

for $u=1,2, \ldots, k$. Let $n \in\left[N_{k-1}+1, N_{k-1}+2 k-2\right]$. Then $n=N_{k-1}+w$ for some $w \in[1,2 k-2]$ and

$$
\begin{aligned}
n=\left(n_{k-1}-n_{k-2}-3(k-1) u+1\right)+\left(n_{k-1}+n_{k-2}+3(k-1) u+w\right) & \\
& \in Q_{k-1}+R_{k-1} \subseteq 2 B_{k-1}
\end{aligned}
$$

for $u=1,2, \ldots, k$. Thus, if $n \in\left[N_{k-1}+1, N_{k}-1\right]$, then n has at least k
representations as a sum of two elements of $B_{k} \cup B_{k-1} \cup B_{k-2}$. This completes the proof of Lemma 3.

Lemma 4. Let B be the set of integers defined in Lemma 3. Let $r_{B}(n)$ denote the number of representations of n in the form $n=b+b^{\prime}$, where $b, b^{\prime} \in B$ and $b \leqslant b$. Then $r_{B}\left(N_{k}\right)=0$ for all k, and $r_{n}(n) \rightarrow \infty$ as $n \rightarrow \infty, n \neq N_{k}$.

Proof. This follows immediately from Lemma 3 , since $r_{B}(n) \geqslant t$ for $n>N_{t-1}, n \neq N_{k+}$

Theorem 2. For any integer t, there exists a set A of nomegative integers such that $r_{A}(n) \geqslant t$ for all sufficiently large n, and, for any subset S of A, the set $A \backslash S$ is an asymptotic basis of order 2 if and only if S is finite. In particular. A does not contain a minimal asymptotic basis of order 2 .

Proof. Let ' n_{k} ' be a sequence of integers that satisfies the conditions of Lemma 3. Let B be the corresponding set of integers constructed in Lemma 3 from this sequence $\left\{n_{k}\right\}$. Then $n_{k} \geqslant 8 n_{k-1}$ implies that

$$
B \cap\left[N_{k}-N_{k-1}, N_{k}\right] \subseteq B \cap\left[n_{k}+N_{k-1}+1, N_{k}\right]=\emptyset
$$

for all $k \geqslant 1$. Choose j so large that $\left|B \cap\left[1, N_{j-1}\right]\right| \geqslant t$. Let F_{j} be a subset of $B \cap\left[1, N_{j-1}\right]$ such that $\left|F_{j}\right|=t$. Let $\left.G_{j}=\left|N_{j}-f\right| f \in F_{j}\right\}_{\text {, and }}$ define A_{j} $=B \cup G_{j}$. Then $G_{j}=A_{j} \cap\left[N_{j}-N_{j-1}, N_{j}\right]$. It follows that $N_{j} \in 2 A_{j}$ and $r_{A j}\left(N_{j}\right)=t$.

Suppose that for $i=j, j+1, \ldots, k$ we have determined finite sets F_{i} and G_{i} and infinite sets $B=A_{j-1} \subseteq A_{j} \subseteq A_{j+1} \subseteq \ldots \subseteq A_{k}$ such that

$$
F_{i} \subseteq A_{i-1} \cap\left[1, N_{i-1}\right], \quad G_{i}=\left\{N_{i}-f \mid f \in F_{i}, \quad A_{i}=A_{i-1} \cup G_{i}\right.
$$

and $\left|F_{i}\right|=\left|G_{i}\right|=t$. Then $r_{A_{i}}\left(N_{i}\right)=t$. Choose $F_{k+1} \subseteq A_{k} \cap\left[1, N_{k}\right]$ such that $\left|F_{k+1}\right|=t$. An additional condition on the choice of the subset F_{k+1} will be imposed shortly. Let $G_{k+1}=\left\{N_{k+1}-f \mid f \in F_{k+1}\right\}$. Let $A_{k+1}=A_{k} \cup G_{k+1}$. Then $\left|G_{k+1}\right|=t$ and $G_{k+1} \subseteq\left[N_{k+1}-N_{k}, N_{k+1}\right]$. Since

$$
A_{k} \backslash B=G_{j} \cup G_{j+1} \cup \ldots \cup G_{k} \subseteq\left[1, N_{k}\right]
$$

and

$$
B \cap\left[N_{k+1}-N_{k}, N_{k+1}\right]=A_{k} \cap\left[N_{k+1}-N_{k}, N_{k+1}\right]=\emptyset,
$$

it follows that $r_{\lambda_{k+1}}\left(N_{k+1}\right)=t$. By induction, we obtain sets F_{k}, G_{k}, and A_{k} for all $k \geqslant j$. Define the set A by

$$
A=\bigcup_{k=1}^{\infty} A_{k}=B \cup\left(\bigcup_{k=1}^{\infty} G_{k}\right) .
$$

Then A is an asymptotic basis of order 2 such that $r_{A}\left(N_{k}\right)=t$ for all $k \geqslant j$, and $r_{A}(n) \rightarrow \infty$ as $n \rightarrow \infty, n \neq N_{k}$.

We now impose the following additional condition on the choice of the sets F_{k} : We must choose every t-element subset F of A exactly once. Thus, if $F \subseteq A$ and $|F|=r$, then $F=F_{k}$ for some unique integer $k \geqslant j$,

Let S be a subset of A. Suppose that S is finite. Since $r_{A}(n) \rightarrow \infty$ as $n \rightarrow \infty, n \neq N_{k}$, it follows that $n \in A \backslash S$ for all n sufficiently large, $n \neq N_{k}$. Since S contains only finitely many subsets F with $|F|=t$, and since each such F destroys exactly one N_{k} with $k \geqslant j$, it follows that $A \backslash S$ is an asymptotic basis of order 2 . If S is infinite, however, then S contains infinitely many subsets F with $|F|=t$, and so S destroys infinitely many integers N_{k}. hence $A \backslash S$ is not an asymptotic basis of order 2 .

Since the infinite set A contains no maximal finite subset S, it follows that A does not contain a minimal asymptotic basis of order 2 . This completes the proof of Theorem 2.

Definition. Let $t \geqslant 1$. An asymptotic basis A of order 2 is t-minimal if $A \backslash S$ is an asymptotic basis of order 2 if and only if $|A \cap S|<t$.

Theorem 3. For any integer t, there exists a set A of nonnegative integers such that $r_{A}(n) \geqslant t$ for all sufficiently large n, and A is t-minimal.

Proof. The construction of A is exactly the same as in Theorem 1, but with a different condition on the choice of the finite sets F_{k} : We must now choose every t-element subset S of A infinitely often. This means that if $S \subseteq A$ and $|S|=t$, then $S=F_{k}$ for infinitely many k, and so S destroys infinitely many integers N_{k}. Since $r_{A}(n) \geqslant t$ for all sufficiently large n, it follows that if $|S|<t$, then S destroys at most finitely many n and so $A \backslash S$ is an asymptotic basis or order 2 . This completes the proof.

The following simple observation is interesting as a contrast to Theorem 2.

Theorem 4. Let A be an asymptotic basis of order 2 such that $r_{A}(n) \rightarrow \infty$. Then there exists an infinite subset I of A such that $A \backslash I$ is an asymptotic basis of order 2, and $r_{A,}(n) \rightarrow \infty$.

Proof. If F is any finite subset of A, then $r_{A F}(n) \geqslant r_{A}(n)-|F|$, and so $r_{\text {AFF }}(n) \rightarrow \infty$.

We shall construct an infinite subset $I=\left\{a_{1}, a_{2}, \ldots\right\}$ of A and an increasing sequence of positive integers N_{1}, N_{2}, \ldots such that $N_{1}<a_{1}<N_{2}$ $<a_{2}<N_{3}<\ldots$, and such that, if we define $A_{k}=A \backslash\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, then $r_{A k}(n) \geqslant k$ for all $n \geqslant N_{k}$.

Choose N_{1} such that $r_{A}(n) \geqslant 2$ for all $n \geqslant N_{1}$. Let $a_{1} \in A$ with $a_{1}>N_{1}$. Define $A_{1}=A \backslash\left\{a_{1}\right\}$. Then $r_{A 1}(n) \geqslant r_{A}(n)-1 \geqslant 1$ for all $n \geqslant N_{1}$. Suppose that for some $k \geqslant 1$ we have determined integers $a_{1}, \ldots, a_{k} \in A$ and integers N_{1}, \ldots, N_{k} such that $0<N_{1}<a_{1}<\ldots<N_{k}<a_{k}$ and, for $j=1, \ldots, k$, if A_{j} $=A \backslash\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}$, then $r_{A_{j}}(n) \geqslant j$ for all $n \geqslant N_{j}$. Since $r_{A_{k}}(n) \geqslant r_{A}(n)-k$,
it follows that $r_{A_{k}}(n) \rightarrow \infty$, and so there exists $N_{k+1}>a_{k}$ such that $r_{A_{k}}(n)$ $\geqslant k+2$ for all $n \geqslant N_{k+1}$. Choose $a_{k+1}>N_{k+1}$ and let $A_{k+1}=A_{k} \backslash\left\{a_{k+1}\right\}$. Then $r_{A_{k+1}}(n) \geqslant k+1$ for all $n \geqslant N_{k+1}$. This completes the induction.

Let $I=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ and define $A^{*}=A \backslash I$. Since $A^{*} \cap\left[0, N_{k+1}\right]$ $=A_{k} \cap\left[0, N_{k+1}\right]$, it follows that if $N_{k} \leqslant n<N_{k+1}$, then $r_{A^{\prime}}(n)=r_{A_{k}}(n) \geqslant k$, and so $r_{A^{*}}(n) \rightarrow \infty$. This completes the proof,

Erdös and Nathanson [5] proved that if A is an asymptotic basis of order 2 such that $r_{A}(n) \geqslant c \cdot \log n$ for some $c>1 / \log (4 / 3)$ and $n \geqslant n_{0}$, then A can be partitioned into two disjoint sets, each of which is an asymptotic basis of order 2. The following result is a simple corollary of Theorem 2.

Theorem 5. For any integer t, there exists an asymptotic basis A of order 2 such that $r(n) \geqslant t$ for all $n \geqslant n_{0}$, but A is not the union of two disjoint sets, each of which is an asymptotic basis of order 2 .

Proof. Let A be a minimal asymptotic basis of order 2 such that $r(n) \geqslant t$ for all $n \geqslant n_{0}$. Since no subset of A is an asymptotic basis, it is clear that A cannot be partitioned into a disjoint union of two asymptotic bases of order 2.

References

[1] P. Erdös and M. B. Nathanson, Oscilations of bases for the naturat numbers, Proc. Amer. Math. Soc. 53 (1975), 253-258.
[2] - Systems of distinct representatives and minimal bases in additive number theory; in: Number Theory, Carbondale 1979. Lecture Notes in Mathematics, Vol 751. SpringerVerlag, Heidelberg 1979, pp. 89-107.
[3] - - Independence of solution sets in addifive mumber theory: in: G.-C. Rota, ed, Probability. Statistical Mechanies and Number Theory, Adrances in Mathemutics Supplementary Studies, Vol. 9, Academic Press, New York 1986. pp. 97-105.
[4] - - Problems and results on minimal bases in additive namber theory; in: Number Theory, New York 1985-86, Leeture Notes in Mathematics, Vol. 1240. Springer-Verlag, Heidelberg 1987, pp. 87-96.
[5] - - Partitions of bases into disjoint umions of hases, 1. Number Theory 29 (1988), 1-9.

MATHEMATICAL INSTTTUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
Hudapest, Hungary
OFFICE OF THE PROVOST AND
VICE PRESIDENT FOR ACADEMIC AFFAIRS
LEHMAN COLLEGE ICUNYI
Brons, New York 14468 US.A

