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INTRODUCTION

One of the best known extremal results involving paths is the following one proved
more than 25 years ago .

THEOREM [2] : A graph G,„ on m vertices with at least [m(k - 1) + 1]/2 edges
contains a path Pk+, on k + 1 vertices . Furthermore, when m = kt the graph tKk
contains the maximal number of edges in an m vertex graph with no Pk+, and is the
unique such graph .

There are many other results in the literature that use that a graph with many
edges or with high-degree vertices has a long path . Several such results are given in the
references [1-4] .

The problem we address here is of a similar nature . Let m, n, and k be fixed positive
integers with m > n- k. We wish to determine the minimum value 1 such that each
graph on m vertices with 1 vertices of degree at least n contains a Pk+, •

A plausible minimum value for I is suggested by the following graph . Let m =
t(n + 1) + r, 0 < r < n_ + 1, with k < 2n + l . Then the graph consisting of t vertex
disjoint copies of H = K„+,-L1k-,1/2J + K Lik _, 1 / 2 J contains tL(k - 1)/21 vertices of
degree n and no Pk+l . When k is even and r + L(k - 1)/21 >- n, the number of
vertices of degree >- n in this graph can be increased by I to tL (k - 1) /21 + 1 without
forcing the graphs to contain a Pk+ , . Simply take one of the vertices of degree
L (k - 1)/21 and make it adjacent to the r vertices in no copy of H .

Thus we have the following conjecture .
CONJECTURE : Let m, n, and k be fixed positive integers with m > n >- k and set 5 = 2

when k is even and S = 1 when k is odd. If G,„ is a graph on m vertices and at least I =

L(k - 1)/21 Lm/(n + 1)] + S vertices of degree >- n, then G,,, contains a Pk+, .
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National Science Foundation Grant DMS-8603717 .
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Although we do not prove the conjectured result, we do show that the value of I
given in the conjecture is "essentially" correct . Much attention is given to the special
case when n + 1 < m< 2n + l . In this case we show that approximately k/2 vertices of
degree >_ n is enough to guarantee that G,,, contains a Pk + , . Unfortunately, even for this
interval of values we are not able to prove the exact statement of the conjecture .

It should be mentioned that the problem considered is not of much interest when
k n + 1 . In fact if m is such that there exist l,,1 2 , . . . , is with n + I _ l i s k for each i
and E ;_, li = m, then K1, U K1z U . . - U K1 is a graph that has all its vertices of
degree >_ n, yet contains no Pk+ , . This can always be done if m is large enough .

RESULTS

Before presenting the results we introduce some nonstandard notation . The symbol
G,,, will always represent the graph of interest, which is assumed to have m vertices .
The vertices of Gm will be partitioned into two classes, those of degree > n, which will
be called high-degree vertices, and the remaining vertices, which will be called
low-degree vertices . A path is called a high-low path if it begins and ends with
high-degree vertices and alternates between high- and low-degree vertices as one
moves from one end of the path to the other . Further a path is called a high-end path if
it is simply a path beginning and ending with high-degree vertices ; nothing is assumed
about the degree of the internal vertices of the path . Also degenerate paths are allowed,
so that a single high-degree vertex is thought of as both a high-end path and a high-low
path. Whenever E is affixed as a superscript on the usual symbol for a path, it is
assumed the path is high-end . Thus PE will denote a high-end path on i vertices.

A principal result of the paper establishes that the conjecture is approximately
correct when m s 2n + 1 . In order to prove this we need two lemmas .

LEMMA 1 : Let P('), p(2), . . . , P (`) be a vertex disjoint collection of high-end paths in
G,„, m < 2n + 1 . Then there exists a high-end path P containing each of the paths P ( ' ) ,
p(2),

	

. . , p(t) .

COROLLARY 1 : There exists a high-end path P in G,,,, m < 2n + 1, containing all
high-degree vertices of G,„ .

A bit more notation is needed to state the second lemma . Consider a vertex disjoint
family P ( ' ) , P ( ') , . . , P ( ` ) of high-low paths in G,,, . Partition the vertices of these paths
into two sets H and L, where H consists of all the high-degree vertices of U ;_, P (') and
L all low-degree vertices . Thinking of the vertices of each path P (') as numbered from
left to right, let R denote the set of right-hand end-vertices of the t paths . Let H' be
those high-degree vertices that are not right-hand end-vertices of some P (` ) , that is, let
H' = H - R . For each h' E H' let V be that low-degree vertex in L that follows h' on
some path P (` ) . A vertex h of H is good if h E R or if h = h' E H' and l' is adjacent to
at least three vertices of R . As usual V(G) will denote the vertex set of the graph G .

LEMMA 2 : Let P('), p(2), . . . , P ( ` ) be a vertex-disjoint family of high-low paths in
G,,,, and let h,, h z E H be a pair of good vertices . Then there exist t vertex-disjoint
high-low paths Q ( ' ) , Q«>, . . , Q ( ` ) such that U ,_, V(Q (') ) = U if, V(P (' ) ) with h, and
h2 end-vertices of some Q (') and Q (') , respectively, i

	

j.
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THEOREM 1 : Let G,,, contain at least k high-degree vertices, with m < 2n + 1 . Then
Gm contains

P
E
2k-7,

P E

Pk
E

,

COROLLARY 2 : Under the conditions of the theorem, G,,, contains a

when k < n/2 + 3

when (n+ 1)/2+3<ksn

when k > n + 1 .

when k<n/2+3

when (n + 1)/2 + 3 <k < n

when k _ n+1 .

COROLLARY 3 : Let G. contain at least k high-degree vertices, m < 2n . Then G,„
contains a Cr where

1 > 2k - 7,

	

when k < n/2 + 3

1>_n-1

	

when (n+1)/2+3<k--n

I>_k

	

when n+I-k.

The graph (Kk + K„+r+k) U Kn,_„-r shows (when k < n) that these results are
close to the best possible . For k >- n + 1 the graph Kk shows Pk is the longest path
possible .

As more evidence that the conjecture is correct we prove the following theorem .

THEOREM 2 : Let k be a positive integer. Then there exists a constant c such that if n
is large enough with respect to k, each graph G,,,, m > n, with at least [m/(n + 1)]
[(k - 1)/21 + c vertices of degree >-n contains a Pk+r •

In the proof of the theorem we in fact show c >- 4 works when n k 2 - 3k + 1 .

PROOFS

Q = x,, X2,.x,~ = u, and Q(2) = Yr,Yv • • Yr2 = U2-

Let U and U2 be the set of vertices adjacent to u, and u 2, respectively, and set

UZ = {Z I Z = x, if xi, E Q (-) U U2,

Z = Yi+1 if Yi E Q (2) n U2, or

z U U2 - (Q (') U Q (2) )}.

Proof of Lemma 1 : Let P('), p(2), . . , P(`) be a vertex disjoint family of high-end
paths in G,,, . Consider a vertex disjoint family Q( ' ), Q (2), . . , Q(J) of high-end paths
whose vertex set includes all vertices of the family P ( ' ) , p(2) , . . , P(i) and is chosen such
that j is minimal . We need only prove j = 1 .

Suppose j > 1 and let
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Since j is minimal, it is easy to check that u,, y, U, U Uz, I U2 1 _ I Uz 1, and U, n
U2 = ~5 . Therefore, I U, U U'2 1 _ I U, I + I U21 s m - 2 - 2n - 1, contradicting that
I U,1, 1 U2 1 _ n . Hence, j = 1 and the proof is complete . D

Note that Corollary 1 is an immediate consequence of Lemma 1, since single
high-degree vertices are considered to be high-low paths .

Proof of Lemma 2 : Let P('), p(2)' . . . , P ( `) be a vertex disjoint family of high-low
paths in G,„ and let h,, h 2 E H be a pair of good vertices . There are several cases to
consider .

Case 1 : h,, h 2 E H' and lie on the same path .

Without loss of generality assume that h, and h 2 are vertices ofP( ' ) and that 1, and
1 2 (the successors of h, and h2 , respectively) are adjacent to the right-hand end-vertices
of p(2) and P (3) , respectively . (Note that a good vertex in H' requires t >- 3 .) Set

P(1) - X1, X2, •

	

, x; - h1, xi+1 - 1 1, Xi+2, . . . . xj - hz, Xj+1 - 12, xj+2, . . . . Xr,,

P(2) = Y1, Y2, • • ,YrZ ,

P(3) = Z1, Z2, •

	

, Z r3 .

Replace these three paths by

Q ( ' ) = Xi, X2, •

	

, ht,
z

Q = Y1, Y2, • • YrZ , 11 = x;+1 , x.+2> • • , x; = hz,

Q(3) = Z1, Z2,

	

Zr3, 12 = Xj+1, Xj+2, . . , Xr, •

These three paths together with p(4), . . , P (` ) give the required family .

Case 2: h l , h 2 E H' and lie on different paths .

Without loss of generality assume h, is on path P ( ' ), h 2 is on path P (2) , and let 1, and
1 2 be the successors of h, and h 2 , respectively . If 1, and 1 2 are adjacent to different
right-hand end-vertices among the paths P(3), p(4), . . , P () , four new paths are found
in a fashion similar to that described in Case 1 . The only other possibility is that both 1,
and 1 2 are adjacent to the right-hand end-vertices of the first three paths and to no
others . Thus in this case we can assume that

PM = Xl, Xv . . . . x l = h,, x i +l = 11, x,+2, •

	

, X rr

P(2) = Y1,Yz, • •

	

Yj = hz,Yj+1 = 12,Yj+2, • • ,Yr2,
P(3) = Z1, Z2,

	

, Zr3 .

Then replace these paths by

Q (1) = X1, X2,

	

, xj = hl,
Q(2) =Y1,Yz, -,y;hz,

Q (3) = Xr	Xi+l = 11,Yrp

	

Yj+l = 12, Zz3, Zr3_,, . . , Z, .

These paths together with p(4), . . , P ( ` ) again give the required family .
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Case 3 : h, E H' and hz E R and lie on the same path .

Without loss of generality assume

Po) - xl, X" . • , x ; - hl, xí+1 = 11, xi+z, • • , xr, = hz,

P(2) = Y1,Yz, . . . ,Yr 2

with 1, adjacent to y rz . Replace these paths by

Q (1) -
(z)Q

	

= v;,Yz> • • > Yrz, 1, = x;+1 , x;+z,

	

xr, = hz

to obtain the desired family .

Case 4: h, E H' and hz E R and lie on different paths .

We may assume

P ( ' ) = XI, x2, • , xi = hl, xi+1 = 11, x;+2, • , xr,,

p(z) =YI,Y2, . . . Yr 2 - hz,
p(3)

= Zl, Z2>

	

, Zr,

with 1, adjacent to zr3 . Then replace P (1) and P (3) by

Q(')=x;,xz, • • ,x;=h1,
Q (3) = Zl, 2 2,

	

, Zr3, h - xi+1, xi+2,

	

, x r,

to obtain an appropriate family .

Case 5 : h,, h z E R .

There is nothing to prove, since the original set of paths P ( ' ) , P (z) , . . , P (` ) fulfill
the required conditions . O

Proof of Theorem 1 : Partition the set of vertices of G,„ into two sets H and L where
H denotes the set of high-degree vertices and L the low-degree vertices of the graph .
Form a minimal family (minimal number of paths) of disjoint high-low paths P ( ' ),
P (z) , . . , P(') such that all vertices of H are included in this family of paths . Recall that
this is possible, since single vertices are allowed as high-low paths . Let L, be the subset
of L of low-degree vertices used in the family of paths and let LZ = L - L, be the
remaining low-degree vertices .

Observe that I LI I + t = IH I and by Lemma 1 that there exists a high-end path P on
I HI + I L, I vertices . Since I H I+ I L, I= 2 1 H I- t and I H I >- t, it follows that P has at
least k vertices . Hence the theorem holds when k >- n + 1 .

We assume for the remainder of the proof that 5 s k < n . Note that when k < 4
there is nothing to prove . Choose k, and x such that k, + x = k - IHI with k, _
(n + 1)/2 when k >- (n + 1)/2 + 3, and x = 3 when k s n/2 + 3 .

Since P has I HI + I L I I = 2k - t = 2k, + 2x - t vertices, the proof is complete
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if

n-1,

	

when k __>_ (n + 1)/2 + 3
2k,+2x-t-

	

(1)
2k - 7,

	

when k < n/2 + 3 .

This means that we can assume this inequality fails so that t >_ 2x + 3 when k >
(n+ 1)/2+3,andt - 8=2x +2 when k<-n/2+3 .

To continue the proof we make some additional observations . Let s be the number
of good vertices, in the sense of Lemma 2, in the paths P ( ' ) , P (z) , . . , P (` ) . From the
minimality of t it follows from Lemma 2 that each vertex of L z is adjacent to at most
one of the s good vertices . Further, since the good vertices are of high-degree, each of
these vertices has at least n - I L,

I -
IHI + 1 adjacencies to vertices of Lz . Hence

s(n - ~L,I - IHI+1)<IL2I=m - 2k+t.

	

(2)

Also for each vertex h of H that is not good the vertex that follows it on its path P ( ' ) is
adjacent to at most two of the t right-hand end-vertices of the paths P ( ' ) , P (2) , . . , P (` ) .
But then these t right-hand end-vertices have a total of at least (I HI - s) (t - 2) + t
(n - I L, I - I HI + 1) adjacencies to the vertices of L Z . From the minimality of t we
obtain

(IHI-s)(t-2)+t(n-IL,I-IHI+1)<IL 2 I=m-2k+t.

	

(3)

To complete the proof we need only show that under the assumed conditions, t >-
2x+ 3when k>-(n+1)/2+ 3andt - 8=2x +2 when k<--n/2 +3, either
inequality (2) or (3) fails to hold . Checking that this is the case amounts to looking at the
number of good vertices in H. It is straightforward to show that inequality (2) fails
when there are at least (2k + t)/3 good vertices, while inequality (3) fails when there
are less than (2k + t)/3 good vertices . This completes the proof of the theorem. El

Corollary 2 is an immediate consequence of Theorem 1, since for k- n each of the
end-vertices of the existing high-end path has an additional adjacency off the path .

Proof of Corollary 3 : Consider the high-end path PE,

2k - 7, when k :< n/2 + 3

i

	

1, when (n + 1)/2 + 3 < k < n, guaranteed by Theorem 1

when k _ n+ 1 .

Let the vertices of this path be u = x,, x Z , . . . , x; = v with U the set of neighbors of u
and 'V the set of neighbors of v . Set V' _ {z J z = x; + , ifx; E Vor z E V - PE} . It is easy
to see if V' n U

	

0, then G,,, contains a C,, I >- i . Also, I V' J = I V1, I Ul >- n with u
V' U U. But then I V' U UI < m - 1 < 2n - 1, so that V' n U

	

and G„, contains
the required cycle . F1

Proof ofTheorem 2 : Assume n is considerably larger than k . In fact, we see in what
follows that n >- k 2 - 3 k + 1 will suffice . Corollary 2 implies the result of this theorem
when m < 2n + 1 and c >- 4. Hence we assume m > 2n + 1 and that the theorem holds
when the graph has less than m vertices .
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Choose a maximal-length high-end path P on I vertices in G,,, . Let this path P be
u = x 1 , x z , . . . , x, = v. We suppose G,,, contains no path on k + 1 vertices and reach a
contradiction . Since P is a high-end path, this means l s k - 2 .

Let N(u) and N(v) be the set of neighbors of the high-degree vertices a and v,
respectively . Observe that neither N(u) - P nor N(v) - P contains high-degree
vertices, since P is a high-end path of maximal length . Further

IN(u)-P1,IN(v)-PI>_n-k+3 .

There are two possibilities to consider .

Case 1 : (N(u) - P) n (N(v) - P) ~. Let G' be the graph obtained from G,,, by
deleting the vertices of (N(u) - P) U (N(v) - P) . Note that no vertex outside P of
high-degree in G,,, has adjacencies into the set (N(u) - P) U (N(v) - P) . Thus G'
has at most m - 2n + 2k - 6 vertices and at least [m/(n + 1)] [(k - 1)/2] + c -
(k - 2) high-degree vertices . Since n >- k 2 - 3k + 1,

[m-2nt+ 1 k-61[k	
2

	 11

	

[n m+ 11 [k 2
	 11

and G' contains a P k+ ,, a contradiction to the supposition that G,„ contains no Pk+i

Case 2: (N(u) - P) n (N(u) - P) ~5 . Let w E(N(u) - P) n (N(v) - P) .
Then w, u = x t , x Z , . . . , x l = v, w is a C,+1 in G,„ . Clearly no two consecutive vertices on
Cl,, are of high-degree ; otherwise, G,,, contains a high-end path on 1 + 1 vertices . Thus
C,+1 contains at most (l + 1)/2 <- (k - 1)/2 high-degree vertices. Also as in Case 1 no
vertex outside P of high-degree has an adjacency into the set (N(u) - P) U
(N(v) - P) . If Cl+, has fewer than (k - 1) /2 vertices of high-degree, then let G' be
the graph obtained from G,,, by deleting the vertices of N(u) - P, while if C,+, has
precisely (k - 1)/2 vertices of high-degree, then let G' be graph obtained by deleting
the vertices of N(u) U P . In each case the number of vertices of high-degree in G' is at
least [m/(n + 1)] [(k - 1)/2] + c - z where z is the number of high-degree vertices
on C,+1 . This is true since when Cl+ , has exactly (k - 1)/2 vertices of high-degree,
each high-degree vertex outside P has no adjacency to vertices of P. But in each of
these two cases

[IG
	11

11 [k 2
	 1

1+c ~[n+ 1] [k 2
	 11

+c-z

so that G' contains a P k+ ,, a contradiction. This contradiction completes the proof of
the theorem. O

QUESTIONS

A natural question concerns the extension of the result of Corollary 3 for cycles . In
fact, does the graph obtained by identifying appropriate vertices from L (m - 1)/n]
copies of H = K„+1_L(k_1)/2J + KL(k_,)/2J , one vertex from each copy of H, suggest the
magnitude of the number of vertices of high-degree necessary for a graph Gm to contain
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a C,, I >- k? It is possible that the following holds . If k < n, and Gm contains no C,
(I > k), then G,„ has at most L (k - 1)/21 L (m - I)/n] + I vertices of degree >-n .

Another question related to the original conjecture occurs when the graph G,„ is
assumed to be connected. The graph, consisting of L(m/(n + 1)J copies of H =

K,i-L(k+i)/4J + KL(k+i)/4J identified at a fixed vertex of each KL(k+1)/4J , contains no
Pk}1 but does contain Lm/(n + 1)J L(k + 1)/41 high-degree vertices. This is
approximately half of the number of high-degree vertices in the original conjecture . Is
there a better extremal example, or does connectivity lower the extremal number of the
conjecture by a factor of 2?
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