
Maximal Antiramsey
Graphs and the Strong
Chromatic Number

ABSTRACT

A typical problem arising in Ramsey graph theory is the following . For
given graphs G and L, how few colors can be used to color the edges of
G in order that no monochromatic subgraph isomorphic to L is formed?
In this paper we investigate the opposite extreme . That is, we will
require that in any subgraph of G isomorphic to L, all its edges have dif-
ferent colors. We call such a subgraph a totally multicolored copy of L .
Of particular interest to us will be the determination of X s (n, e, L), de-
fined to be the minimum number of colors needed to edge-color some
graph G(n, s) with n vertices and e edges so that all copies of L in it are
totally multicolored .

It turns out that some of these questions are surprisingly deep, and
are intimately related, for example, to the well-studied (but little under-
stood) functions rjn), defined to be the size of the largest subset of
{1, 2, . . . , n} containing no k-term arithmetic progression, and g(n, k, /),
defined to be the maximum number of triples which can be formed from
{1, 2, . . . , n} so that no two triples share a common pair, and no k ele-
ments of {1, 2, . . . , n} span I triples .

1 . INTRODUCTION

Here we will study certain problems that combine elements of Ramsey theory,
extremal set theory, and the theory of the strong chromatic number of hyper-
graphs . If H is a hypergraph, define the strong chromatic number X s (H) to be
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the minimum number of colors required to color the vertices in such a way that
the vertices of each hyperedge ofH have no repeated color. For the more famil-
iar (ordinary) chromatic number X(H), it is only required that the vertices of
each hyperedge of H not all have the same color. The inequality X,(H) >_ X(H)
holds in general, with equality when H is 2-uniform, that is, when H is a
graph . When a hyperedge (or any other sort of set we happen to have in mind)
is colored with no repeated color, we say the hyperedge is totally multicolored,
which we abbreviate TMC . We use the same term for a hypergraph when all its
hyperedges are TMC . We also use TMC as a verb from time to time .

Many standard problems in Ramsey theory for graphs can be thought of as re-
lating to the ordinary chromatic number of a certain hypergraph . If G and L are
graphs, define the hypergraph H = H(G, L) to have vertex set equal to the edge
set of G, and to have for its hyperedges the edge sets of all copies of L that are
subgraphs of G. (Here, subgraph does not mean induced subgraph .) The usual
(2-color) Ramsey arrow relation G -- L is equivalent to X(H(G, L)) > 2. Here,
we will be concerned with antiramsey results . That is, we want to know how
many colors are needed to color the edges of G so that (the edges of) all copies
of L in G are TMC. In other words, we want to know the value of Xs (H(G, L)) ;
we abbreviate this expression by Xs (G, L) .

More specifically, we will study extremal antiramsey numbers . Denote a
generic graph with n vertices and e edges by G(n, e) . Define Xs (n, e, L) _
min X,(G(n, e), L), where the minimum is taken over all graphs of type G(n, e) .
That is, Xs(n, e, L) is the smallest number r such that there exists a G(n, e) that
has an edge-coloring in r colors such that every L in G is TMC.

The function Xs(n, e, L) has an obvious connection to extremal theory . As
usual, define ex(n, L) to be the greatest e such that there is a G(n, e) that con-
tains no copy of L at all . Thus, Xs (n, e, L) = 1 if 1 < e < ex(n, L), and
Xs (n, e, L) > 1 if e > ex(n, L) . A problem in extremal theory that is often stud-
ied is to estimate the number of L that must occur in a graph with n vertices and
e edges, which is in some sense the density of L in G(n, e) . Similarly,
Xs (n, e, L) could be thought of as a measure of the density of L .

In the first part of this paper we will focus our attention on the case
X(L) > 2, with an emphasis on X(L) = 3 . In the second part we treat the case
X(L) = 2. It is well known from extremal theory that there is a fundamental di-
chotomy between these two cases, so this is a natural division .

We illustrate most of our results for X(L) > 2 in Table 1, which appears in
the appendix, together with an explanation .

If we examine the first three rows of Table l, we see a striking trichotomy :
C 3, C5 , and all other odd cycles behave very differently . For L = C3, Xs (n, e, L)
is very small and is not hard to determine ; for L = C51 Xs (n, e, L) seems to be-
have in a complicated and poorly understood way ; for the other odd cycles,
Xs (n, m, L) is very large, and good estimates are known . After preliminaries in
Section 2, we deal with complete graphs and odd cycles in Sections 3-5 .

In Section 6, we treat the case that L is bipartite, i .e ., X(L) = 2; this case
does not lead itself to representation in Table 1 . In some sense, we have less to



say here, partly because our questions lead immediately to well-studied difficult
problems (such as the determination of the size of the largest subset of
{1, 2, . . . , n} containing no 3-term arithmetic progression), and partly because
there is probably just not as much structure for this case as there is for the case
X(L) > 2 . The remaining L in Table 1 are all of the form kK3 U 1K2 , that is, the
disjoint union of k copies of K3 and l copies of K2 . In Section 7, disjoint unions
of graphs are studied, with an emphasis on unions of complete graphs, and with
further emphasis on kK3 U 1K 2 . In addition to being natural and not too hard to
deal with, these graphs extend the range of behavior known to be possible . Fi-
nally, Section 8 discusses open problems .

2 . SOME PRELIMINARIES

Before we come to the main results, it is necessary to introduce some more no-
tation, and to state certain lemmas we will need later .

We begin by adopting the convention that L always denotes a graph without
isolated vertices . The notation follows Harary [9], unless otherwise stated. For
instance, Pk denotes a path on n vertices (not edges) . However, we use e(G) to
denote the number of edges of G .
We will often be concerned with complete bipartite graphs and related

graphs . We designate a complete bipartite graph by K, ,„ or K(m, n), as conve-
nient. We call the two maximal independent sets of such a graph its parts (not
partite sets), and speak of the first and second parts . We frequently want to give
a bipartite graph a particular coloring, called a star coloring . In such a color-
ing, we choose one of the parts of the graph and give all the edges emanating
from each one of the vertices the same color, but with different colors at each
of these vertices . Naturally, we can specify which part the centers of the stars
are in . We also use the notation K(m + G, n), where G is a graph with p < m
vertices, to represent the graph formed by identifying the vertices of G with p
vertices of the first part of the K(m, n) . The parts of this graph are defined to be
the same as the parts of the original K(m, n) .

One particular bipartite graph we will be greatly concerned with is the
Turán graph K(rn/2], rn/2]), which we will also call T2 (n) . Of course,
e(T2 (n)) = ex(n, K3 ), and we also call this value t 2(n) . More generally, T, (n) is
the extremal graph for Kk+ ,, and t z (n) is e(T,(n)), which has the value
[(k - 1)/k] (z) + O(n) .

We now give some lemmas that will be useful later . The first is trivial, but it
is convenient to have it stated explicitly .

Lemma 2.1 . If e > ex(n, L), then Xs (n, e, L) ? e(L). 1

The remaining lemmas are all known results in extremal theory, or simple
modifications thereof . In particular, the next two are implicit in [6] .
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Lemma 2 .2 . Let L = K(k + Kzi l) . Then if n is large enough,
ex(n, L) = tjn) . 1

This implies that ex(n, C k ) = t2(n) when k ? 3 is odd and n is large . The
next lemma is closely related to the preceding one . We also use this lemma to
illustrate an abuse of notation that is often useful to employ . When we say an
in the following lemma, we really mean Lanj . In other cases, it might mean
[an], as appropriate .

Lemma 2.3 . Let k be fixed . Then there is an a > 0 such that if n is large
enough then for L = K(k + K2 , an) we have ex(n, L) = tjn) . 1

Our next lemma is well known in various forms, but we will prove it in the
particular form we want .

Lemma 2 .4 . Let 0 < c < 1/2 and k > 0 be given, let n be large, and let
G = G(n, cn 2) . Then G has a subgraph with no vertex of degree less than k and
with cn 2 + O(n) edges .

Proof. Simply remove successively all vertices with degree less than k until
none are left . No more than kn edges (actually fewer) are removed in this way,
so that cn2 + O(n) edges remain . 1

The proof of the following result uses the same idea, but with more technical
care . The statement is a simplification of that of Lemma V.3.2 of [5] .

Lemma 2 .5 [5] . Let 1/2 > a > /3 > 0 . Let n be large and let G be a
G(n, an 2 ) . Then G contains a subgraph G, with p > (20)" 2n vertices such that

8(G,) > 2(a - /3)n

and

e(G,) > e(G) - (a - 0) (n - p) (n + p + 1) . 1

Here, as usual, 8(H) denotes the minimum degree in H . We make a final re-
mark concerning the notation used in the statement of our results . If we say, for
instance, that e = ( z) - En 2, this is to be interpreted similarly to the same state-
ment in Table 1 . That is, e is any fixed constant that is small enough, and we
require that n > no(e) . The interpretation is similar when c appears, except that
e can be arbitrarily large . If e and c are not used, then if the theorem requires
n > no , this will be said explicitly . The implied constants in 0-terms will de-
pend only on e or c (if present), unless otherwise stated .



3 . COMPLETE GRAPHS

It is possible to give very precise results in the case of Kk , k >_ 3 . When k > 3,
the situation is a bit simpler than when k = 3, so we treat that case first . Note
the relative lack of dependence on k when k > 3 .

Theorem 3 .1 . Let k > 3, and let x be such that tx ,(n) < e < tx (n) . Then if
x < k, Xs (n, e, Kk ) = 1, and if x > k, we have Xs(n, e, Kk) _ (') .

Proof. The conditions on e give us that any G(n, e) contains a K. . If x ? k,
then any two edges in this Kx are contained in a Kk . Thus, Xs (n, e, K,) > (z) .
On the other hand, the conditions on e permit the construction of a graph
G = G(n, e) that has chromatic number x, namely, any subgraph of Tx (n) . Give
G a vertex-coloring in x colors, and choose a set of (z) colors for the edges . For
each pair of color classes in this vertex-coloring, select a different one of these
(2) colors and give all the edges joining that pair of color classes this color . Any
two edges with the same color have at least two nonadjacent endpoints, and so
cannot be used in the same Kk . Thus, Xs (G, Kk ) (z), and if x < k, we have
X S (G, K,) = 1 . 1

Theorem 3.2 . Let x be such that t, -,(n) < e < tx (n) . Then
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K3)

	

~x, if x is odd,
x - 1, if x is even .

Proof. Trivially, we assume x ? 3 . Again, the conditions on e imply that
any G(n, e) contains a Kx . Thus, any two adjacent edges in this K, are contained
in a K3 , but now nonadjacent edges are irrelevant . Thus, the number of colors
needed to TMC all K3 in Kx is just the edge-chromatic number of Kx , which is
well known to be x if x is odd, and x - 1 if x is even. As in the previous proof,
we have a G = G(n, e) that has chromatic number x . Give G a vertex-coloring
in x colors and identify each of the color classes with a vertex of K r . Give the
edges of this Kx an edge-coloring corresponding to the edge-chromatic number
of K,, and let G inherit this coloring in the obvious way . No two adjacent edges
of G have the same color, so each K3 is TMC . 1

Note that X,(n, (2), K3) < n . The only other graphs with this property are
stars and matchings . Otherwise, we always have X S(n, (z), L) _ (z) for n large .

4. FIVE-CYCLES

The previous section gives the behavior of C3 = K3 . Now we examine C s ,
which is the subtlest case involving cycles . Of the four ranges of e that we are
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interested in, only for e - ex(n, C S) + 1 = t2(n) + 1 do we have a reasonably
satisfactory answer. Indeed, a more careful analysis can be done to show that
the upper bound is actually the correct answer (see [8]) .

Theorem 4 .1 . Let n be large, and let e = t2(n) + 1 . Then

c,n < X,(n, e, Cs) < [n/2j + 3 .

Proof. Consider any graph G with n vertices and tz (n) + 1 edges. By
Lemma 2.3, G contains a K(3 + K2, c,n) . Let v denote the vertex in the first
part of G that is not incident to the K, It is easy to see that any two edges of
K(3 + K2 , c,n) incident to v belong to a Cs; thus c,n < Xs (n, e, C S ) . On the
other hand, let G be the graph K((n/2] + Kz , In/2j), which has e edges . Let u
and v be the vertices of the Kz in the first part of G . Give G - u - v a star
coloring, the stars having centers in the second part, requiring Ln/2] colors .
Choose three new colors . Give the edge {u, v} one of these, and give the re-
maining edges incident to u one of the other new colors, and all the remaining
edges incident to v the other . It is easy to see that every C S in G is TMC, and
we have used Ln/2] + 3 colors . 1

Theorem 4.2 . Let n be large, e = t2(n) + x, and let
y = F(\/(8x + 1) + 1)/21 . Then

Xs(n, e, C,) < (y + 1) [n/2] + x .

Proof. The value of y assures that x < (') . Let Go be a graph with x edges
and y vertices, and let G be the graph K(rn/ V + G o , Ln/2j) . Color all
yLn/2j + x edges incident to at least one vertex of G o with different colors .
Now give G - Go a star coloring, with centers in the second part, using Ln/2]
new colors . It is straightforward that all C S 's in G are TMC . 1

Note the special case Xs (n, t,(n) + cn, C S) = O(n 3/2 ), an entry in Table 1 . It
seems reasonable to conjecture that the upper bound in Theorem 4.2 is often
sharp, at least when x = (z) > 3 . (When x = 3, one can color all three edges
of G o = K 3 the same, saving two colors, and when x = 1, Theorem 4.1 gives a
considerably better bound.) Even if the upper bound is not very sharp, we ex-
pect that Xs (n, e, CS ) grows moderately rapidly as e moves away from t,(n) .
However, the best we can prove in this direction is the following weak result :

Theorem 4.3 . If e = t2(n) + En 2 , then Xs(n, e, C s ) > cn for any fixed c,
once n is sufficiently large .

Proof. Let G be any graph with n vertices and e edges . We use Lemma 2.5,
with a = 1/4 + E and /3 = E/2 . Then by that lemma, G contains a G, with
p > E"2n vertices and with 8(G,) > (1/2 + E)n . Observe that in G,, the end-



points of every P4 have a point in their common neighborhood that is not in
the P4 ; in other words, every P4 can be extended to a C 5 . Therefore, for every
C S in G, C G to be TMC, so must every P4 . But by Theorem 6 .3 below,
Xs (n, cn 2 , P,) > nu(n), where u(n) - with n (although it grows quite
slowly). However small e is, it is fixed, and so e 12 nu(e' /2n) > cn for any fixed
c, once n is large enough . 1

In Section 6 we mention a general result (Theorem 6.2) that applies, in par-
ticular, to C S when e = (z - e)n 2 for any fixed e > 0 .

Theorem 4.4 . If e = (z - e)n 2 , then

X, (n, e, Q

	

O(n2/log n) .

5 . ODD CYCLES WITH LENGTH AT LEAST SEVEN

Now we consider odd cycles larger than C 5 . These cycles have a much simpler
behavior than CS does. Note again that ex(n, Q + 1 = t2(n) + 1 for all odd
cycles when n is large enough .

Theorem 5.1 . Let k >- 7 be an odd integer . Then if n is large and e > t2(n),
we have Xs (n, e, C k ) ? cn2 .

Proof. For the moment, assume that k >- 9 . Considér any graph G with n
vertices and at least t2(n) + 1 edges . We apply Lemma 2 .5, with a = 1/4 and
0 = 1/8 . By Lemma 2 .5, G contains a graph G, with p > n/2 vertices, mini-
mum degree > p/4, and with
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e(G,) > t2(n) + 1 - (n - p) (n + p + 1)/8

?n2/4-(n-p)(n+p- 1)/4+(n-p)(n+p- 1)/8

=p2/4+(n-p)/4+(n-p)(n+p-1)/8

=p2/4+(n-p)(n+p+ 1)/8

t2(p) ,

provided that p < n ; but if p = n, then e(G,) > t2(p) immediately. By
Lemma 2.3, G, contains a K(3 + K2 , c, p), where we may assume that c, < 1/8 .
Call the two parts of this K(3 + K2 , c, p) X and Y, respectively, and let Z denote
the rest of G, . Every vertex of Y has at least p/8 + O(1) edges going to Z, so
that at least p 2c,18 + O(p) edges join Y and Z. Consider the bipartite graph
formed by the edges joining Y to Z. Remove all vertices from this bipartite
graph with degree less than k, creating a new bipartite graph G2 on reduced sets
Y, and Z, . By Lemma 2.4, this bipartite graph still has plc,/8 + O(p) edges .
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We now claim that any two edges of G z are contained in some C k . First, as-
sume that they are adjacent. It is clear that we may extend these two edges to a
Pk z , where the endpoints of the path are in Y, . Using the two adjacent vertices
of X, we can extend the Pk , to a Ck . Now assume that these two edges are not
adjacent. Extend one of these to a Pk_ 6 and the other to a (disjoint) P3 , the end-
points of each being in Y, . Use the two adjacent vertices of X to join the P k 6
and P3 into a Pk , and then use the remaining vertex of X to extend this to a Ck .

Therefore, for every Ck of G, to be TMC, all p'c,/8 + O(p) > cn' edges of
G z must have different colors .

Now we turn to the case k = 7. As before, we find a graph G, with sets of
vertices X, Y, and Z, although now we will only need the two adjacent vertices
of X . Also as before, we remove all vertices of small degree in G,, but this
time we use Lemma 2 .5 a second time, instead of Lemma 2.4 . By Lemma 2 .5,
we may remove all vertices of degree < czn, where cz is small enough that at
least c an vertices remain in Y, . (For technical convenience, choose l 1c, to be an
integer.) Therefore, G z has at least Cz c 3n 2 edges. Again, any two adjacent edges
of G z are in a C, . We no longer can consider just two nonadjacent edges ; in-
stead, consider any set of 1/c z such edges, and in particular, the 1/c 2 endpoints
of these edges that lie in Z, . These each have at least czn edges going to Y,, so
some two of them have a common neighbor in Y,, yielding a P S with endpoints
in Y, . Using the two adjacent vertices in X, this P S extends to a C7 .

Thus, any 1/C Z edges of G, have two that belong to a C 7 . Hence, if all C 7 in
Gz are to be TMC, at least czc,n 2 = cn 2 colors must be used. This completes
the proof . 1

Is it true that we can take c = 1/8 in Theorem 5 .1? If so, this would be best
possible . If may in fact be true that for all odd k ? 7, if e = t 2(n) + 1, then
Xs (n, e, Ck) _ ( 1 + o (1)) (n /8) .

Observe that in terms of Table 1, Theorem 5 .1 covers all four ranges of e .
Since Xs (n, e, Ck) (z) for all e, only the constant c can change for the other
ranges .

We point out that for k > 3 we have

x, (n, e, C2k.F,) = e - o(n') iff e = (z) - o(n2) .

	

(5 .1)

To see this, suppose on one hand that e < (z) (1 - c) for c > 0 . Let G be the
graph Kan an U K(,-2 .) . where a > 0 is chosen so that e(G) - e . We can color
G with 1 + (( `

- za )
n) colors by giving all the edges of Kan,an the same color, and

all the edges K(1 2a)n different colors, so that all Czk+,'s in G are TMC .
On the other hand, suppose G = G(n, e) with e = (z) - o(n) . If V(G) _

{x	xn } then all but o(n) of the xk must have degree n - o(n) . If we
c-color the edges of G and c < (I - 8)e for 8 > 0, then there must be two
edges e, and e z having the same color and with both endpoints of each e i having
degree n - o(n) . These edges can now easily be embedded into a C,1+ , in G,
which of course is not TMC . This proves (5 .1) . In fact, the same argument
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shows that if L has two strongly independent edges (i .e ., so that the four end-
points only span two edges) and e = (z) - o(n), then Xs(n, e, L) = e - o(n2) .

Of course, the situation is quite different for C s . We can show that if e -

(1 - c) (z) then Xs (n, e, C s) < cn'/log n . On the other hand, if e > ( z) - cn 3'2

then Xs(n, e, CS ) _ ( z) - o(n 2) .

6. BIPARTITE GRAPHS

Since the Turán numbers for bipartite graphs are so small (e.g ., o(n 2)) com-
pared to nonbipartite graphs, it is not surprising that the general behavior of Xs
in this case is also rather different .

We begin by stating two results showing that it is important whether or not
our graph L contains two strongly independent edges, by which we mean two
disjoint edges whose four vertices span no other edges .

Theorem 6 .1 . Suppose L is a bipartite graph having at least two strongly in-
dependent edges, and maximum degree at least two . Then for any a > 0, if
e > an' we have

Xs(n,e,L) > a'n'

	

(6.1)

for some fixed positive constant a' depending on a .
Note that "most" bipartite graphs satisfy the hypothesis of Theorem 6.1 .
On the other hand, whenever L does not have two strongly independent

edges (even when L is not necessarily bipartite) then Xs(n, e, L) is relatively

small for e < (z - E)n' . A precise statement of this is the following :

Theorem 6 .2 . If no two edges of L are strongly independent and

e < ( 1 - E)n 2 for some fixed E > 0, then

Xs (n, e, L) = 0(n'/log n) .

	

(6.2)

The proofs of Theorems 6.1 and 6.2 (and their extensions) are rather lengthy
and will appear in [4] .

We next treat the case L = Pk , the path consisting of k vertices . The behav-
ior of Xs (n, e, P,) depends rather strongly on whether k = 3, k = 4, or k >_ 5,

a situation similar to the case of the odd cycles . We will treat these cases

separately .
To begin with, it is easy to see that the number of colors needed to color the

edges of a graph G so that all P3 's are TMC is exactly X, (G), the edge-chromatic
number of G. By a well-known theorem of Vizing, this is bounded above by 1
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plus the maximum degree in G . This implies that

Xs (n, e, P3) = 2e +0(1),
n

which is all we are going to say about P3 .
The case L = P4 is much more substantial . Let r z (n) denote the maximum

size that a subset X C [n] :_ {1, 2, . . . , n} can have which contains no k-term
arithmetic progression .

Theorem 6 .3 .

Xs (n, cnr 3 (n), P4 ) < n for a suitable c > 0 .

	

(6 .3)

For any e > 0,

	

Xs (n, en', P4 ) > cn for any c if n is sufficiently large .
(6 .4)

Proof. It was shown by Ruzsa and Szemerédi (see [10]) that for a suitable
constant c, > 0, it is possible to construct a 3-uniform hypergraph T (n) on [2n]
so that

(a) Distinct triples T, T' E T(n) have IT n T' I <_ 1 .
(b) No six points in [2n] span three triples in T(n) .
(c) T(n) contains c,nr3(n) triples .

An easy averaging argument now implies that [2n] can be partitioned into
disjoint sets A, B,C with JAI + IBI = n, ICI = n so that at least 3/16 of the
triples of T(n) are of the form {a, b, c} with a E A, b E B, c C C .

Next, we form an edge-colored bipartite graph G with vertex sets A and B
which has an edge {a, b} colored with color c iff {a, b, c} C T(n) . It follows
from (b) that every P a in G is TMC . Thus, (6.3) follows .

To prove (6.4), suppose G = G(n, en') has been cn-colored so that all P4 's
are TMC, where e > 0 is fixed. We now reverse the preceding procedure .
Namely, we first partition the vertex set of G into two sets A and B so that the
bipartite subgraph G' formed by edges of the form {a, b}, a E A, b C B, con-
tains at least 1 en 2 edges ; it is not hard to see that this is possible . Next, we
form a hypergraph S consisting of all triples {a, b, c} where the edge {a, b} of
G' has color c . It follows from the hypothesis that S satisfies conditions (a) and
(b) . However, a result from [10] implies that such a hypergraph S must satisfy
JE(S)J = o(n 2 ) . This contradicts the assertion that IE(S) ? z En 2 , and the proof
of (6.4) is complete . 1

In fact, it follows from the preceding considerations that the largest value of
e = e(n) for which Xs(n, e, P4 ) < n holds satisfies

c,g(n ; 6, 3) < e(n) < czg(n ; 6, 3)
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where c, and c z are suitable positive constants, and g(n; k, l) denotes the maxi-
mum number of triples that can be formed on [n] so that no k points of [n] span
l triples (and, as usual, distinct triples share at most one common element) .

Using a lower bound on r 3 (n) of Behrend [2], it follows that

Xs(n,n2/exp(cUlog n), P,) < n

for a suitable c > 0 .
We point out here that similar considerations lead to the result

Xs (n, cg(n; 7, 4), Ca) < n

for a suitable constant c > 0 . This implies (by a remark in [10]) that

Xs (n, cra(n), Ca) < n .

On the other hand, it is not known whether g(n; 7, 4) = o(n), although even if
this held, it is conceivable (but unlikely) that for a sufficiently small E > 0, we
could have

X, (n, En 2,Q < n .

Finally, we treat the paths Pk , k >_ 5 . One might expect a change in behavior
here since it is just these paths that have two strongly independent edges .

Theorem 6 .4 . For k >_ 5,

X, (n, tn, Pk) _ (2 + 0(1))t2,

	

(6 .5)

for k < t = o(n) as n

	

~.

Proof. Let G = G(n, tn) be given, with t = o(n), and for each vertex v of
G, let N,(v) denote the set of edges of G that can be reached from v in at most
one step, that is, edges incident with v and its neighbors . By the usual argu-
ment, we can successively delete vertices v (and their neighbors) whenever
IN,(v)l < 2t 2 until this is no longer possible, so that the resulting graph
G' = G'(n', t', n') has t' ? t and n' arbitrarily large (provided n is) . By simi-
lar considerations, we can also assume that all vertices in the remaining graph
also have degree at least t. Now, for any vertex vo in G', it is not difficult to
see that if any two of the edges in N,(vo) (restricted to G') were to have the
same color, then since all vertices in G' would have degree at least t ? k, a
non-TMC copy of Pk would be formed . Thus, all edges in N,(vo) must have dis-
tinct colors, which implies that at least 2t á colors are needed .

On the other hand, consider the graph Go consisting of n/2t disjoint copies of
K2, . Color the edges of each K2t with (z`) distinct colors, but use the same set of
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(z`) colors for each Kzt . Certainly, all copies of Pk (or for that matter, any con-
nected graph) are TMC . However, Go has (1 + o(1))n vertices and (1 + o(1))tn
edges, and (1 + 0(1)) • 2t2 colors are used . Thus, (6 .5) follows and the theo-
rem is proved. 1

7. DISJOINT UNIONS OF GRAPHS

A natural class of graphs that yields a rich structure is that of disjoint unions of
graphs . We use the standard notations kL and L, U L z to denote k disjoint
copies of L and the disjoint union of L, and L,, respectively . Our emphasis will
be on unions of complete graphs, but we first study a more general case .

Theorem 7.1 . If L, has k vertices, and if ex(n, L,) - ex(n, L z ) ? kn, then for
every e,

Xs (n, e, L, U Lz) ? max{Xs (n, e, L,), Xs(n, e - kn, L,) + e(L,)} .

Proof. Consider any G - G(n, e) with e = ex(n, L,) + 1 . Find any copy of
L, ; to TMC this L, requires e(L,) colors . Remove the incident edges, leaving at
least e - kn . Suppose that only Xs (n, e - kn,L,) - I new colors were avail-
able to color the remaining edges . Then some Lz would use either a repeated
color or one of the colors of the L, . In either case, there would be an L, U Lz
that was not TMC. Hence, Xs (n, e, L, U L z) ? Xs (n,e - kn,L,) + e(L,) . On
the other hand, since for every L, in G there is a disjoint Lz , all L, must be
TMC. Hence, Xs (n, e, L, U L 2) ? Xs(n, e,L,) . 1

Theorem 7.2 . Let L be a G(k, e) that is edge-transitive, and let t = ex(n, L) .
Let L* be a union of l ? 2 subgraphs of L, at least one of which is L . Then if
m ? l,

Xs (n, t + mkn, L*) ? me .

Proof. Let G be a graph with n vertices and t + mkn edges . We claim that
G contains m disjoint copies of L . To see this, find an m'L, where m' is maxi-
mal, and remove all edges incident to this m'L, leaving more than
t + (m - m')kn edges . If m' < m, this remaining graph would have more
than t edges, contradicting the maximality of m' . Thus, mL C G . If any two
edges of this mL were the same color, there would be an L* that was not TMC .
Therefore, at least me colors are needed . 1

These general theorems will be useful in the special case of disjoint unions of
complete graphs, to which we now turn . It is convenient to begin by consider-
ing the upper ranges of Table 1, that is, e = ex(n,L) + En 2 and (z) - en' .
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Before beginning we mention a result that follows easily from a theorem of
Moon (see [11]) .

Lemma 7.1 . Let L = L, U L 2 where L, = 1K,r and Lz is a (possibly empty)
disjoint union of graphs with chromatic number less than k . Then for n suffi-
ciently large,

ex(n, L) = t,-,(n - l + 1) + (l - 1) (n - l + 1) + (12 1 ) .

Theorem 7 .3 . Let L be a disjoint union of complete graphs and let x be such
that t ,(n) < e <- tr (n) . Then for n > x(x - 1),

x
Xs (n, e, L) < - n .

Proof. Let G C T,(n), the extremal graph for KX+ , mentioned in Section 2 .
T,(n) is a complete x-partite graph, with no part larger than (nlx) + 1 <
[nl(x - 1)] . For each of the (z) pairs of parts of G, give the bipartite graph
joining them a star coloring, using different colors each time . No pair requires
more than nl (x - 1) colors, so that no more than (z) [nl (x - 1)] _ (xl2)n col-
ors are needed in all to TMC all copies of L. 1

The above theorem gives an upper bound of cn for any disjoint unions of
complete graphs in all four ranges of Table 1 . In the fourth range, this is sharp,
as the following theorem shows :

Theorem 7 .4 . Let L be a disjoint union of complete graphs, the largest being
Kk . If a > (k - 2)l(k - 1), then there are c, and cz , depending only on L and
a, such that, if n is large and e = a('),

c,n < Xs (n, e, L) < czn .

Proof. The upper bound comes from Theorem 7.3 . The lower bound comes
from Theorem 7.2 . Since ex(n, Kk ) _ (k - 2)1(k - 1) (z) -+ O(n), we have
me ? c,n for a suitable c, . 1

If at least two complete graphs are smaller than the largest, cn is the right an-
swer in all ranges .

Theorem 7 .5 . Let L be a disjoint union of complete graphs, where the largest
is Kk and where at least two components are smaller than this . Let e =
ex(n, L) + 1 . Then there is a c such that, if n is large enough,

Xs (n, e, L) - cn .
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Proof. Write L as L, U L z,, where L, = 1Kk , and where all components of
Lz are smaller than Kk . By Lemma 7 . 1, e = ex(n, L) _ (k - 2)/(k - 1) (z) +
O(n) . Also by Lemma 7. 1, ex(n, Lz ) < (k - 3)/(k - 2) (z) + O(n) . Therefore,
Theorem 7.1 gives Xs (n, e, L) ? Xs (n, e - 1k, L2), and from this, Theorem 7.4
gives Xs (n, e - lk, Lz) >_ cn for some c, once n is large enough . 1

By the results we have so far, we have left to consider only L = 1Kk and
L = 1Kk U Kk -, where k' < k, and only in the first three ranges of Table 1 . It
appears that the case k > 3 is different from k = 3 ; from now on we will ig-
nore the case k > 3, leaving only L = 1K3 , l >- 2, and L = IK3 U Kzi l ? 1,
note that the upper bound for e in the following involves t z (n), not ex(n, L) .

Theorem 7 .6 . Let L be either IK3 or 1K3 U K2 , l >- 1, and let e < t2(n) + x 2 ,
where 2x < Fn/2j . Then

Xs (n, e, L) < 3x + 1 .

Proof. Let G = K(rn/2j + K,, x , Ln/2j) . We claim that XS(G,L) < 3x +
1 . Give the Kx, ., in the first part of G a star coloring, using x colors . Give the
bipartite graph joining the vertices of this Kx, x to the second part a star coloring,
with the centers of the stars in the K,c , X , using 2x new colors . Finally, give all
other edges one other color. We have used 3x + 1 colors, and the only color
that has an induced K,, z is the last one . Hence, since a graph is a disjoint union
of complete graphs if it contains no induced K,, 2 , only the last color could be
repeated in a copy of L . But no K3 has even one edge in the last color, so this is
impossible . 1

We note in passing that the 3x + 1 can be improved to 3x when L = 1K3 . Ob-
serve that Theorem 7.6 gives all of the upper bounds for L of the given type for
the first three ranges in Table 1, except for 2K3 at e = ex(n, 2K3 ) + 1 =
tz(n - 1) + n - 1 . The next theorem takes care of this exception .

Theorem 7.7 . If n is sufficiently large and e = tz(n - 1) + n - 1, then

Xs (n, e, 2K3 ) = 6 .

Proof. The trivial Lemma 2 .1 gives Xs (n, e, 2K3) ? 6. To get the upper
bound, set Go = K(r(n - 1)/2j + K2 , L(n - 1)/2j), calling the endpoints of
the edge in the first part u and v . Adjoin one new vertex w to Gp and join it to
all the other vertices, calling the result G. Clearly, G has e edges. Color {u, v}
in color 1 . Color all other edges incident with u and v in colors 2 and 3, respec-
tively. Color all edges joining w to the first part of Go - {u, v} in color 4, and
all edges joining w to the second part of Go in color 5 . Finally, color all remain-
ing edges in color 6 . Observe that every copy of 2K3 in G uses a and v in one
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K3 and w in the other. From this, it is easy to see that every copy of 2K3 in G
has all 6 colors . 1

Now we give a result that yields all the remaining lower bounds in Table 1
for graphs of the form under consideration .

Theorem 7.8 . Let L = 1K 3 U K211 >_ 1 . Then if n is large and e >_
max(ex(n,L),t z(n) + cn), then there is a c,, depending only on c, such that

Xs(n,e,L) ? c,n'~ .

Proof. Let G be any G(n, e), where e ? max(ex(n, L), t z(n) + cn) . This
graph contains an 1K3 . Form a maximal set of vertex-disjoint triangles in G,
which we will call Go . Delete the edges of Go from G. In general, G will con-
tain further triangles, all of which have some vertex in common with Go . Suc-
cessively find such triangles, deleting the edges of each as it is found, until
none are left . Let G, denote the graph induced by the edges of all these trian-
gles (including those in Go) ; G, has at least cn edges, and hence was formed
from at least cn/3 triangles . By construction, no two of these triangles have an
edge in common. We claim that XS(G,,L) ? c,n"' for suitable c, .

Assume that Go has n "2 triangles . Then if any two of the 3n "2 edges have the
same color, then some L will not be TMC . Hence, we can assume that Go has
m < n "2 triangles . Then one of the 3m vertices of Go is contained in at least
(cn/3)l(3m) > cn"2l9 of the triangles used in forming G, . Let v be this vertex,
let S denote the graph formed by this set of triangles at v, and let T be the tri-
angle of Go that contains v ; note that T C S . By the way G, was constructed,
these triangles have only v in common, and no triangle of Go , other than T has
any vertex in common with any of them. Suppose that any two independent
edges in S had the same color . Then we could form an L that has these two
edges, using one of them as the Kz , the other one in a triangle containing v, and
as many of the triangles in Go - T as necessary. Hence, all of the more than
cn "2l9 independent edges of S need different colors if all copies of L are to be
TMC . Therefore, the desired result is proved, with c, = min(3, c/9) . 1

8. OPEN QUESTIONS

We now discuss a few of the many questions raised by the preceding results .
Some of these have been mentioned in earlier sections .

One of the most vexing questions is the true behavior of C 5 . In the last two
ranges of Table 1, the value of Xs (n, e, CS ) is only known to within a trifle bet-
ter than a factor of n, and fairly subtle methods are needed to achieve even this .
There are also substantial gaps in our knowledge of the behavior of disjoint
unions of complete graphs, especially when K3 is not the largest component .
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There is little doubt that the results of Section 7 could be substantially im-
proved . In fact, it seems likely that the exact value of Xs (n, e, L) could actually
be obtained in a number of cases .

We next mention some questions concerning P, .

(i) Is it true that

Xs (n, enr3 (n), P,) > c'n ,

where c'

	

- as c -- -? If so, then by Theorem 6 .2', this would be es-
sentially best possible .

(ü) Is it true that for some c > 0,

Xs (n, un, P,) < cu ?

(iii) Is it true that for all e > 0,

Xs (n, (z) - n2E, p4) > c(e)n 2 ?

It will be shown in [4] that if e = 62) - n2-°(° then Xs (n, e, P,) = o(n) .
This shows that the preceding inequality, if true, would be best possible .

(iv) Observe that for t = en, Xs (n, tn, Pa)/t - as n - (by Theorem 6.2) .
On the other hand, for t bounded, Xs (n, tn,P,)/t is bounded as n -> - .
In fact, a result of Alon and Kahn [1] shows that for t = (log n)d , d
fixed, we have Xs (n, tn, P,)/t < c(d) . It would be of great interest
to know exactly how rapidly t = t(n) could grow and still have
Xs (n, tn,P,)/t bounded. Note that by the bound of Behrend mentioned,
earlier, we have for suitable c, c',

Xs (n, tn, P,) < t exp(c \/log t) for t < n/exp(c' Vlog n) .

Returning to more general graphs, suppose L is a connected bipartite graph
which is not a star. Is it then true that X s (n, en', L)/n - - as n - -?

There are many other natural L that could be studied, but there is another
way to look for new results . In Table 1, the values of Xs (n, e, L) follow differ-
ent patterns for different graphs . What patterns are possible? For instance, is it
possible to have an entry of cn 4'3 ? Instead of starting with a graph, one might
start with some pattern and look for a graph that produces that pattern . The re-
sults of Section 7 were found partly in this way . In ordinary extremal theory,
the possible types of behavior can be classified according to the chromatic
number of L, and this classification influences Xs (n, e, L) . Perhaps some sub-
classification is possible for the behavior of Xs (n, e, L) in terms of other proper-
ties of L. We hope to return to many of these questions in a later paper.

Note . Our initial interest in this topic was motivated by a question of S .
Berkowitz [3], which arose in his investigations of time/space trade-offs for
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Turing machines . Specifically, he asked for bounds on the size of the largest set
S C A 3 with A = GF(2)" so that

(i) (x, y, z) E S

	

x + y + z = 0, where addition is componentwise
modulo 2 .

(ü) There do not exist x -/ Y', y y-', z

	

z' with

(x',y,z) E S,

(x, y', z) E S,

(x,y,z') E S .

It is easy to see in this case that S must correspond to a triple system on A 3 in
which no 4 points span 2 triples and no 6 points span 3 triples . It follows from
results in [10] that for a suitable c > 0,

ISI = o(n') .

We do not know if S1 > n'
- E is possible for every e > 0 if n is sufficiently large .

However, as noted by one of us (V.T.S .), this suggests the following attrac-
tive question :

If S is a Steiner triple system on [n] then is it true that one can always select
a subset S' of n 2- E triples from S so that no 6 points span 3 triples in S'?
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This table is rather schematic . We now explain how to interpret it . The reader
is warned that the symbols c and E are to be interpreted somewhat differently in
different places, as explained below . The table has six columns . The first gives
the graph L and the second gives the value of ex(n, L) . The function tk (n) is the
Turán function ex(n, K,,,) .

The remaining four columns represent (in abbreviated fashion) estimates,
bounds, or exact values for Xs (n, e, L) in four critical ranges of e, with a refer-
ence to appropriate theorems in this paper. Often, the results in the various sec-
tions are more general than implied by the table, so for more detail, see the
theorems referred to . The first column, column three, does not actually repre-
sent a range, but the particular value ex(n, L) + 1, the smallest e for which the
entry would be greater than 1 . In a few cases an exact value is given . The entry
cn is to be interpreted to mean that there exist 0 < co < c, such that con ~-
Xs (n, e, L) . < c, n . Note that it does not mean that Xs (n, e, L) = cn + o(n) for
some c. Although this is almost certainly true in all these cases, it has been
proved for none of them . Entries like cn "Z and cn 2 are to be interpreted similarly .

Column four represents the range in which e = ex(n, L) + cn + O(1),
where c is any fixed positive constant . Again, an entry like cn means that in
this range, con < Xs (n, e, L) < c, n, where co and c, may (usually do) depend
on c. An inequality sign in the entry, like < cn"' in the row for Cs , means that
for every positive c, there is a c, , presumably depending on c, such that in this
range, Xs (n, e, L) < c,n 3/2 . In this entry, no lower bound is given . From this it
may be inferred that no lower bound is known other than that in column three .
Since Xs (n, e, L) is obviously nondecreasing in e, that the entry in column three
implies that con <_ X s (n, e, L) in this range for some suitable c o .

Column five represents the range in which e = ex(n,L) + En 2 + o(n),
where E is any sufficiently small constant . (Obviously, E < 1/4, and usually it
needs to be considerably smaller than this for the entry in the table to be valid .)
Since ex(n,L) = n 2/4 + o(n 2 ) for all L with chromatic number 3 [7], this
could be written n 2(1/4 + E) + o(n 2) . The entry for Cs , >cn, means that there
is no constant c, for which Xs (n, e, L) < c,n for all n and for e in such a range .
When the entry is of the form cn or En, it means that Xs (n, e, L) < c,n or E,n,
where c, or E, may depend on E . However, E, is definitely known to approach 0
as E does, but this is not the case for c, .

Finally, column six represents the range in which e = (z) - En2 + o(n 2),
where E is any sufficiently small constant . The interpretation of each entry is
similar to those in other columns . Again, the c o and c, generally depend on E ;
they may become arbitrarily large as E

	

0.
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