Note

Monochromatic Sumsets

Paul Erdös and Joel Spencer

Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651

Communicated by the Managing Editors
Received October 11, 1987

For $S \subset N$ the sumset $P(S)$ is defined as the set of all sums $a_{1}+\cdots+a_{t}$, t arbitrary, a_{i} distinct elements of S. Let $F(k)$ denote the least n so that if $[n](=\{1, \ldots, n\})$ is two colored there is a k-set S with $P(S) \subset[n]$ and $P(S)$ monochromatic. The existence of $F(k)$ is given by Folkman's Theorem, see, e.g., [1]. Here we give a lower bound for $F(k)$.

Theorem. $F(k)>2^{\text {d }{ }^{2} / \mathrm{lk} k}$.
Lemma. If $|S|=k$ then $|P(S)| \geqslant k(k+1) / 2$.
Proof. Let $a_{1}<\cdots<a_{k}$ denote the elements of S. The sums $a_{1}+\cdots+a_{j}, 1 \leqslant j \leqslant k$ and $a_{1}+\cdots+a_{j}-a_{i}, 1 \leqslant i<j \leqslant k$ have a canonical ordering and are distinct.

Lemma. At most $(k n)^{\text {len }} u^{2 k} k$-sets $S \subset[n]$ have $|P(S)| \leqslant u$.
Proof. Let $a_{1}<\cdots<a_{k}$ denote the elements of S. Call i doubling if $P\left(a_{1}, \ldots, a_{i}\right)$ has double the size of $P\left(a_{1}, \ldots, a_{i-1}\right)$. There are at most $\lg u$ doubling i. Hence there are at most $k^{\mathrm{ln} u}$ choices for doubling positions i and at most $n^{\mathrm{I}_{8 \mu}}$ choices for the values a_{i}. If i is not doubling then $a_{i}=x-y$, where $x, y \in P\left(a_{1}, \ldots, a_{i-1}\right) \subset P(S)$ so there are at most u^{2} choices for a_{i}.

Proof of Theorem. Two-color [n] randomly. The expected number of k-sets S with $P(S)$ monochromatic is then

$$
\sum_{\substack{|S|=k \\ P(S)=[n]}} 2^{1-P(S)} \leqslant \sum_{u \geqslant k(k+1 / / 2}(k n)^{\lg u} u^{2 k} 2^{-u}<1
$$

with $n<2^{c k^{2} / l s k}, c$ an appropriately small absolute constant.

Attempts to remove the $\lg k$ factor in the exponent have led to an intriguing question. Define the (r, s) sumset game as follows. Player 1 selects distinct $a_{1}, \ldots, a_{1} \in N$. Player 2 then selects (seeing a_{1}, \ldots, a_{r}) $a_{r+1}, \ldots, a_{r+x} \in N$ distinct from each other and the previous a_{i}. The payoff, to Player 1 , is $\left|P\left(a_{1}, \ldots, a_{r+x}\right)\right|$. Let $V(r, s)$ denote the value of this perfect information game. Can an exact formula for $V(r, s)$ be found? We conjecture $V(r, s) \geqslant c s^{2} 2^{r}$. Note $V(r, s) \leqslant\left(\frac{(+2}{2}\right) 2^{r-1}$ as Player 2 may select $2 a_{1}, \ldots,(s+1) a_{1}$. Perhaps Player 1 can pick r numbers sufficiently independent so that Player 2 can do no better.

Note. A. Taylor [2] has shown that $F(k)$ is bounded from above by a tower of threes of height $4 k-3$. While not Ackermanic, this upper bound is quite far from our lower bound.

References

1. R. L. Graham. B. L. Rothschild, and J. H. Spencer, "Ramsey Theory," Wiley, New York, 1980.
2. A. Taylor, Bounds for the disjoint union theorem, J. Combin. Theory Ser. A 30 (1981), 339-344.
