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Abstract . Let g(n, m) denote the class of simple graphs on n vertices and m edges
and let C E 9( a, m). For suitably restricted values of m, C will necessarily contain
certain prescribed subgraphs such as cycles of given lengths and complete graphs . For
example>if m > 7nZ then G contains cycles of all lengths up to Li(n+ 3) J . Recently
we have established a number of results concerning the existence of certain subgraphs
(cliques and cycles) in the subgraph of G induced by the vertices of C having some
prescribed minimum degree . In this paper, we present some further results of this type.
In particular, we prove diet every G E 9(+a m) contains a pair of adjacent vertices each
having degree (in C) at least f(n,m) and determine the best possible value o(/(n, en),
Form > rn2 we find that C contains a triangle with a pair of vertices satisfying this
same degree restriction . Some open problems are discussed .

1. Introduction .

All graphs considered in this paper are finite, loopless and have no multiple edges .
For the most part, our notation and terminology follows that of Bandy and Murty
[2j . Thus, a graph G has vertex set V(G), edge set E(G), v(G) vertices, a(G)
edges, maximum degree d (G) and minimum degree 6(G) . K„ denotes the com-

plete graph on n vertices andCea cycfe of length8. C + Hdenotes the disjoint
union of the graphs G and H . The join C V H of disjoint graphs G and If is the
graph obtained from G + H by joining each vertex of G to each vertex of H .

Let 9( n, m) denote the class of graphs on n vertices and m edges, and let
C E ('(n, m) . For suitably restricted values of m, C will necessarily contain
certain prescribed subgraphs such as cycles of given lengths, complete graphs,
etc . Indeed, given any graph H on n or fewer vertices, dun for sufficiently large
m all graphs in g(n, m) will contain a subgraph isomorphic to H . The problem
of determining the maximum m such that y ( n, m) contains at least one graph G
which has no subgraph isomorphic to H is a fundamental problem in extremal
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graph theory. This maximum m is known for certain H . For example, Turan's
theorem gives the maximum to when H = Kk+1 . We refer the reader to the book
of Bollobás [1] for an excellent presentation of results of this type .

Recently, we ([3 • 61) have established a number of results concerning the
existence of certain subgraphs (mostly cliques and cycles) in the subgraph of
C E 9(N m) induced by the vertices of 0 having some prescribed minimum
degree d. We obtained the best possible results when the subgraph If in question
was a Kk + 1, k > 2 , a Cc or a path of specified length .

In this paper, we present some further results of this type . In particular, we
prove that every G E 9(7% m) contains a pair of adjacent vertices each having
degree (in G) at least f (a) n, where a = and

f ( C Z) _
{(l/14)J---a, if a <

2 -,/-2o, - 1,

	

otherwise.

Moreover, we establish that this result is best possible . For a > }, we prove that
a pair of adjacent vertices each having degree at least f(a) n is contained in a
triangle ofG. We conclude the paper with a discussion on some open problems .

2 . Main results.
Our first result establishes the existence of a K2 in the subgraph of G E 9(N m)
induced by the vertices of degree at least d for sufficiently small d.

Theorem 1 . Let G E S(n, m) and let a= ~L . Then G contains a pair of adjacent
vertices each having degree at lead f(a)n, where

f J(I - l -4 a), ifa S
f(a) __

2V2--a - 1,

	

otherwise.

Moreover, this result is best possible .

Proof: For a graph G E Q(n, an2 ), let d(G) be the smallest value such that the
subgraph Gt of a induced by the vertices of degree at least d( C) has no edges .
Let

min {d(G)} = d(G*) = d,
GGO(&04)

and {V(G,)I=n1 . We will show that, d> f(a) •n .
By simple counting we have

anz <- g(m)

	

(n- n,)(d- 1),

	

ifn1 > d- 1

	

(1)z
T(n- ni ) (nt + d- l), otherwise . .

For n1 > d - 1, g( nt) is clearly monotonically decreasing in nt and he=

max {g(nt)}=g(d- 1) .

	

(2)
% >-a-1
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For n! << d - I ,

g(nn +1)-9(nt)- 2(n-2nj-d)
which is non-negative only when nt S 1(n - d) . Hence,

g(d- 1),

	

if d- 1 S .(n- 1)
max
s l

{g(ni)}-
g(~(n-d+ 1)) otherwise .

	

)

From (1), (2) and (3) we conclude that

a

	

(n-d+ t)(d- 1), if d- I :4-(n- 1)

$(n+ d- 1) 2 ,

	

otherwise.

Hence,

d - l

	

ifd- 1 < j(n

I

	

- 1)
e

b(a) = n(2 V'2-a - 1),

	

otherwise .
> min(a(a), b(o) 1 .

We note that a(a) = b(a) when a a j and a(a) - b(or) is an increasing function
in a. Hence

a(a), if a 5 Id - 1 >
b( a) , otherwise.

d- 1 ~ f(a) n

as required.
That. the result is best possible follows from the following constructions . For

a S , the graph K.,,. with u = (f (a)nl has at least ant edges and each
edge has one end with degree rf (a) nl . A graph C E Q(n, an? ) having the
required degree property can be obtained from K,,,,r„ by deleting, if necessary, a
few edges. For o >> 4 , let

u = In,/2-c, J .

Let R,,t denote a graph on u vertices and (JutJ edges having maximum degree
t . Consider the graph

H

	

V R,,,i

with t = jnf(a)J -(n-u), where lt',,..,, denotes the complement of K. . The
graph H has at least ant edges and each edge has at least one end of degree at
most f f (a) nJ . A graph C E 9(n, an2 ) having the required degree property can



be obtained from H by deleting, if necessary, a few edges . This completes the
proof of the theorem.

We note that for a S $

and hence

/
>- -~(1- ~)

z
}=-,

AU) -n> rn
.

n

Thus, every G E 9(n, m), m <- Jn2 , contains a pair of adjacent vertices each
having degree greater than half the average degree. When m is 0(n) we can restate
Theorem I as :

Corollary . Let G E 9(n, m) withm = 0(n), Then G contains a pair of adjacent
vent ices each having degree (in G) at least l ? J + 1 and this bound is attained for
sufficiently large n .

A special case of a result proved in [3] asserts that every G E 9 (n, t rnz., j + 1)
contains a triangle each vertex of which has degree greater than J and that this
result is best possible . It is natural to ask whether anything can be said about the
degrees of two vertices in a triangle of C . We now show that for a > i there
is always a pair of adjacent vertices in C E 9(n, ant ) having degree at least
(2 2a - 1)n and contained in a triangle of G . Moreover, this result is best
possible .

Theorem 2. Let G E 9(n, an2 ), a > z . Then C contains a triangle two
vertices of which have degree at least(2 V2-c,- 1) n and this result is best possible .

Proof: Let u be a vertex of G having maximum degree A . We denote by N(u)
and N(u) the set of neighbours and non-neighbours, respectively, of u in C. If
every vertex of N(u) has degree at most n - A, then

s(G) <_ A(n-A)

Hence, at least one vertex of N(u) has degree greater than n- A and, thus, G
has a triangle with two of its vertices having degree greater than n - A . Thus, we
may suppose that

A > 2n(1 -- 2a) + 1 .

=2u



Now since
1N(u)l=n-A-1<-(2 2a-1)n-2,

G contains a triangle with the required degree property if a vertex of N(u) ha
degree at least (2 2 a - 1) ,n . So suppose all the vertices of N (u) have degre
less than (2 v52-a - 1) n . Then

E d(u) < 1(A) = (n-A)A +A(2 2a- 1)n .
vEV(C)

For fixed n, f (A) attains its maximum value at A = 2 a . But f (nvf2--a)
2 ant and hence

s(G) < 2 f(A) < ant ,

This contradiction establishes the existence of a triangle in C, two vertices
which have degree at least (2 v2-* - 1) n,

That the result is best possible follows from the following construction . Let

d= ((2 2a- I) n1 and t=

	

2aI .

Let Rt,d+t-A be a graph on t vertices, l4t(d + t - n)S edges having maximu
degree d + t - n . The graph

H = Rt d+t-u V K,t-t

has at least ant edges and every triangle contains at least two vertices in Rt,d+t-

A graph C E G(n, an2 ) having the degree property can be obtained from 11 t
deleting, if necessary, a few edges . This completes the proof of the theorem.

3 . Discussion .
We conclude this paper with an exposition of some open problems . Our 6
problem was noted in (3].

Problem 1. Let f( n, r) denote the, largest integer such that every G contained
G (n, Un'J +1) contains an r-cycle the stun of the degrees of its vertices bei
at least f0q, r) . Determine f (N r) .

Theorem 4 of (3] asserts that f ( n, r) > T- for 3 <- r < E6! + 2 . Erdös a
Laskar (7] proved that

(1+c)n< f(n, 3) <
(

_
T

C)

2121



where c is a positive constant . This result has recently been improved by Pan [8]
who proves that for every C E 9(N m)

5A,

	

ifin' <m<n2 (10- 32/17

f(n,3)_> 2n+R Jm(4m-n2)-m, if n2 (10- 32)/17 sms4n2
(3© -2n+4m)/t1,

	

otherwise .

Determining f (n, 3) exactly seems to be difficult .
Our next problem is suggested by the results of this paper.

Problem 2 . Let G E 9 (n, ton2j + 1) . A triple (a, b, c) of non-negative Teals is
said to be feasible if every G contains a triangle XI z2 z3 with

dc(xt) > an, d0(x2) > bn and do(x3) > en .

Characterize the set of feasible triples .
Trvially (1,0,0) is feasible . We know ([3], Theorem 4) that (1,1, 4-) is
feasible and is best possible . Theorem 2 asserts that ( 2 - 1, 2 - 1, 0) is
feasible ; can we say anything about do(x3)7 Problem 2 can be generalized to
larger cycles, in particular odd cycles C,2, + 1 . The results of (3] - [61 yield some
feasible tuples . More generally, we can ask the same questions when m = art ,
a>0 .
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