PAUL ERDÕS, ALEKSANDAR IVIČ

ON THE ITERATES OF THE ENUMERATING FUNCTION OF FINITE ABELIAN GROUPS

(Presented at the 3rd Meeting, held on March 25, 1988 by M. Tomić and S. Aljančić)

Abstract

The function $a^{(r)}(n)$, which represents the r-th iteration of $a(n)$ (the number of non-isomorphic Abelian groups with n elements), is studied. Upper bounds for $a^{(r)}(n)$ are established, as well as the asymptotic formula for sums of $K(n)$, where $K(n)=\min \left\{r: a^{(r)}(n)=\right.$ $=1\}$. Connections with analogous problems for the iterations of $d(n)$ (the number of divisors of n) are discussed.

1. Introduction

Let $a(n)$ denote the number of non-isomorphic Abelian (commutative) groups with n elements. It is well known that (see [5]) $a(n)$ is a multiplicative function of $n(a(m n)=a(m) a(n)$ for coprime m and $n)$ such that $a\left(p^{k}\right)=P(k)$ for every prime p and integer $k \geq 1$ (here and later p, p_{1}, p_{2}, \ldots denote primes), where $P(k)$ is the number of unrestricted parititons of k. Hence $P(1)=1$, $P(2)=2, P(3)=3, P(4)=5$, and as $k \rightarrow \infty$

$$
P(k)=(1+o(1))(4 \sqrt{3 k})^{-1} \exp \left\{\pi(2 k / 3)^{1 / 2}\right\}
$$

which is a classical formula due to Hardy and Ramanujan (see [13], p. 240). The values of $a\left(p^{k}\right)$ do not depend on p but only on k, so that $a(n)$ is a ,prime--independent" multiplicative function satisfying $a(p)=1$ for every prime p. One can easily exhibit other integer valued arithmetic functions with similar properties, and one such function is $S(n)$, the number of non-isomorphic finite semisimple rings with n elements (see [10]). Thus in what follows one could easily generalize the problems and results to a suitable class of non-negative, prime independent, integer valued multiplicative functions such that $f(p)=1$ for every prime p. However, in order to keep the exposition clear and simple, we shall deal only with the case $f(n)=a(n)$.

From known results on $a(n)$ we mention

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log a(n) \log \log n}{\log n}=\frac{\log 5}{4}, \tag{1.2}
\end{equation*}
$$

which was proved by E. Krätzel [12] $(\log n=\ln n$ is the natural logarithm of n), and

$$
\begin{equation*}
\sum_{n \leq x} a(n)=\sum_{m=1}^{3} A_{m} x^{1 / m}+R(x), A_{m}=\prod_{k=1, i \neq m}^{\infty} \zeta(k / m) . \tag{1.3}
\end{equation*}
$$

Here ζ is the Riemann zeta-function, and $R(x)$ is the error term in the asymptotic formula (1.3), for which the best published estimate $R(x) \ll x^{97 / 381} \log ^{35} x$ is due to G. Kolesnik [11] (here and later $f(x) \ll g(x)$ and $f(x)=O(g(x))$ both mean $|f(x)| \leq C g(x)$ for $x \geq x_{0}$, and C, C_{1}, C_{2}, \ldots are some (unspecified) positive constants). For other recent results on $a(n)$ the reader is referred to [6], [7], [9] and Ch. 14 of [8]. The aim of this paper is the study of the iterates of $a(n)$. For any arithmetic function $f: N \rightarrow N$, and any integer $r \geq 1$ one can define

$$
f^{(r)}(n)=\underbrace{f(f(\ldots f}_{r \text { times }}(n) \ldots))
$$

as the r-th iterate of f, so that in this notation $f^{(1)}(n)=f(n)$. If $f(n)$ is multiplicative, then in general already $f^{(2)}(n)$ is not multiplicative, which makes the study of the iterates of multiplicative functions difficult. If $r \geq 2$ is fixed, then two among the most natural problems concerning $f^{(r)}(n)$ are the evaluation of sums of $f^{(r)}(n)$ and the determination of the maximal order of $f^{(r)}(n)$. In the case of $f(n)=d(n)=\sum_{a b=n} 1$ (the number of divisors of n), these problems were treated by Erdős and Kátai [2], [3]. In [3] it was proved that

$$
\begin{equation*}
\sum_{n \leq x} d^{(r)}(n)=(1+o(1)) A_{r} x \log _{r} x \quad\left(A_{r}>0, x \rightarrow \infty\right) \tag{1.4}
\end{equation*}
$$

holds for $r=4$, which was shown earlier by I. Kátai to be true for $r=2,3$ also. An old conjecture of Bellman and Shapiro (see [1]) states that (1.4) Folds for any fixed $r \geq 2\left(\log _{r} x=\log \left(\log _{r-1} x\right)\right.$ is the r-fold iterated logarithm). On the other hand, Erdős and Kátai proved in [2] that for every $\varepsilon>0$

$$
\begin{equation*}
d^{(r)}(n) \ll \exp \left\{(\log n)^{1 / l+\varepsilon}\right\} \tag{1.5}
\end{equation*}
$$

and that

$$
\begin{equation*}
d^{(n)}(n)>\exp \left\{(\log n)^{1 / l,-\varepsilon}\right\} \tag{1.6}
\end{equation*}
$$

holds for infinitely many n, which means that they have essentially determined the maximal order of $d^{(r)}(n)$. Here l_{r} is the r-th Fibonacci number: $l_{-1}=0, l_{0}=1, l_{r}=l_{r-1}+l_{r-2}$ for $r \geq 1$.

When one considers the above two problems for $a^{(r)}(n)$, then it turns out that the situation is in a certain sense opposite to the one for $d^{(r)}(n)$,
where (1.4) is known only for $r \leq 4$, but (1.5) (up to „ $\varepsilon^{\prime \prime}$) is the best possible. Namely, it was proved by A. Ivić [7] that

$$
\begin{equation*}
\sum_{n \leq x} a(a(n))=\sum_{n \leq x} a^{(2)}(n)=C x+O\left(x^{1 / 2} \log ^{4} x\right) \tag{1.7}
\end{equation*}
$$

for a suitable $C>0$, and since trivially $a^{(r)}(n) \leq a(n)$ the method of [7] obviously gives also

$$
\begin{equation*}
\sum_{n \leq x} a^{(r)}(n)=B_{r} x+O\left(x^{1 / 2} \log ^{4} x\right) \quad\left(B_{r}>0\right) \tag{1.8}
\end{equation*}
$$

for any fixed $r \geq 1$, which can be compared to (1.4). In particular, (1.8) shows that $a^{(r)}(n)$ possesses a positive mean value for any fixed $r \geq 1$, and the error term (uniform in r) in (1.8) is sharp. Thus this problem is satisfactorily resolved, but determining the maximal order of $a^{(r)}(n)$ turns out to be difficult. The methods of [2] which yield (1.5) seem to be of no avail here, and we are at present unable to determine precisely the maximal order of $a^{(r)}(n)$. There is, however, another problem involving $a^{(r)}(n)$ which is somewhat different from the corresponding problem for $d^{(r)}(n)$, and with which we can deal successfully. Since $a(p)=1$ and $d(p)=2$ for all primes p, it makes sense to define
and

$$
k(n)=\min \left\{r: d^{(r)}(n)=2\right\}
$$

and

$$
K(n)=\min \left\{r: a^{(r)}(n)=1\right\} .
$$

The existence of both $k(n)$ and $K(n)$ is easily established, and in [3] it was shown that

$$
\begin{equation*}
0<\limsup _{n \rightarrow \infty} \frac{k(n)}{\log \log \log n}<\infty . \tag{1.9}
\end{equation*}
$$

It was noted in [3] that the summatory functioni of $k(n)$ ic very difficult to estimate. On the other hand, we shall establish in Th. 2 a sharp asymptotic formula for the summatory function of $K(n)$, which implies that $K(n)$ has a positive mean value. The upper bound in (1.9) remains true if $k(n)$ is replaced by $K(n)$. This will follow trivially from cur upper bound for $a^{(r)}(n)$ in Th. 1, but we are unable to determine whether the lim sup in question for $K(n)$ is positive or (which seems to us to be more likely true) is equal to zero. We also think that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} K(n)=\infty, \tag{1.10}
\end{equation*}
$$

but we are unable to prove (1.10) at present.

2. Statement of results

Before we formulate our results we note that there are many n for which $a(a(n))$ must be fairly large. Namely, let

$$
n=\left(p_{1} p_{2} \ldots p_{k}\right)^{2},
$$

where p_{j} is the j-th prime number. Then.

$$
\begin{align*}
& a(n)=P^{k}(2)=2^{k}, \\
& a(a(n))=P(k) \gg \exp \left(C k^{1 / 2}\right) \quad(C>0), \tag{2.1}
\end{align*}
$$

which follows from (1.1). But the prime number theorem gives

$$
\log n=2 \sum_{p \leq p_{k}} \log p=(2+o(1)) p_{k}=(2+o(1)) k \log k \quad(k \rightarrow \infty),
$$

hence $k \gg \log n / \log _{2} n$, and (2.1) implies that

$$
\begin{equation*}
a(a(n))=a^{(2)}(n) \gg \exp \left(C_{1}(\log n / \log \log n)^{1 / 2}\right) \quad\left(C_{1}>0\right) \tag{2.2}
\end{equation*}
$$

holds for infinitely many integers n. Lower bounds for $a^{(r)}(n)$ for $r \geq 3$ are difficult to obtain, since very little is known aboat the structure of prime factors of $P(k)$. The situation with upper bounds for $a^{(r)}(n)$ is better, and we shall prove

THEOREM 1. There is a constant $B>0$ such that

$$
\begin{equation*}
a^{(2)}(n)=a(a(n)) \ll \exp \left\{\frac{B(\log n)^{7 / 8}}{(\log \log n)^{19 / 16}}\right\}, \tag{2.3}
\end{equation*}
$$

and if c_{r} is the constant defined by

$$
\begin{equation*}
\log a^{(r)}(n)<_{r}(\log n)^{q}, \tag{2.4}
\end{equation*}
$$

then for $r \geq 3$

$$
\begin{equation*}
c_{r} \leq \frac{1}{2} c_{r-1}+\frac{3}{8} c_{r-2} \quad\left(c_{1}=1, c_{2}=\frac{7}{8}\right) . \tag{2.5}
\end{equation*}
$$

As in $\S 1$, let $K(n)$ for a given n be the smallest r such that $a^{(r)}(n)=1$. Then we have

THEOREM 2. There is a constant $E>1$ such that fcr any given $\varepsilon>0$

$$
\begin{equation*}
\sum_{n \leq x} K(n)=E x+O\left(x^{1 / 2+\varepsilon}\right) . \tag{2.6}
\end{equation*}
$$

While the asymptotic formula (2.6) is sharp, the bounds for the constants c_{r} (defined by (2.4)) can probably be improved. In the proof of Th. 1 we shall use the upper bound

$$
\begin{equation*}
\omega(P(n)) \ll \frac{n^{1 / 2}}{\log n}, \tag{2.7}
\end{equation*}
$$

which is the immediate consequence of (1.1) and $\omega(n) \ll \log n / \log 2 n$, where as usual $\omega(n)$ denotes the number of distinct prime factors of n (and $\Omega(n)$
is the number of all prime factors of n). Better bounds than (2.7) would lead to better results in Th. 1, and in particular we conjecture that

$$
\begin{equation*}
\omega(P(n)) \ll \log ^{c} n \tag{2.8}
\end{equation*}
$$

for some suitable $C>0$, which would give $c_{2} \leq 3 / 4 \mathrm{in} \mathrm{Th}. \mathrm{1} .\mathrm{If} \mathrm{true}, \mathrm{(2.8)}$ seems unattainable by present methods.

3. Upper bound estimates for iterates

In this section we shall prove Th. 1. The crucial element in the proof is the upper bound for $\omega(a(n))$, contained in the following

Lemma 1.

$$
\begin{equation*}
\omega(a(n)) \ll(\log n)^{3 / 4}(\log \log n)^{-11 / 8} . \tag{3.1}
\end{equation*}
$$

Proof. Let $n=p_{j i}^{\alpha_{1}} \ldots p_{j r}^{\alpha_{r}}(r=\omega(n))$ be the canonical decomposition of n.
Then

$$
a(n)=P\left(\alpha_{1}\right) \ldots P\left(\alpha_{r}\right),
$$

and in bounding $\omega(a(n))$ we can suppose that the α 's are distinct, since $\omega\left(m^{k}\right)=\omega(m)$. If $S \geq 2$ is a parameter which will be determined later, then using (2.7) we obtain

$$
\begin{aligned}
& \omega(a(n))=\omega\left(\prod_{\alpha_{i} \leq S} P\left(\alpha_{i}\right) \prod_{\alpha_{i}>S} P\left(\alpha_{i}\right)\right) \\
& \leq \sum_{\alpha_{i} \leq S} \omega\left(P\left(\alpha_{i}\right)\right)+\sum_{\alpha_{i}>S} \omega\left(P\left(\alpha_{i}\right)\right) \\
& \ll \frac{S^{1 / 2}}{\log S} \sum_{\alpha_{i} \leq S} 1+\sum_{\alpha_{i}>S} \frac{\alpha_{i}{ }^{1 / 2}}{\log \alpha_{i}} \\
& \ll \frac{S^{3 / 2}}{\log S}+\frac{1}{\log S}\left(\sum_{i=1}^{r} \alpha_{i}\right)^{1 / 2}\left(\sum_{\alpha_{i}>S} 1\right)^{1 / 2} \\
& \ll \frac{S^{3 / 2}}{\log S}+\frac{1}{\log S}(\log n)^{1 / 2}\left(\sum_{\alpha_{i}>S} 1\right)^{1 / 2},
\end{aligned}
$$

since

$$
\sum_{i=1}^{r} \alpha_{i}=\Omega(n) \leq \frac{\log n}{\log 2} .
$$

To estimate $R=R(S, n)=\sum_{\alpha_{1}>S} 1$, note that from $n=\prod_{i=1}^{r} p_{j i}^{\alpha_{i}} \geq \prod_{\alpha_{i}>S} p_{j i}^{\alpha_{i}}$
we have (p_{R} is the R-th prime)

$$
\log n \geq S \sum_{p>p_{R}} \log p \gg S R \log R
$$

Hence for $\log ^{A} n \ll S \ll \log ^{B} n \quad(0<A<B<1)$ we have

$$
\begin{equation*}
R=R(S, n)=\sum_{\alpha_{1}>S} 1 \ll \frac{\log n}{S \log \log n} \tag{3.2}
\end{equation*}
$$

Therefore we obtain

$$
\begin{gathered}
\omega(a(n)) \ll \frac{S^{3 / 2}}{\log S}+\frac{S^{-1 / 2} \log n}{\log S(\log \log n)^{1 / 2}} \\
\ll(\log n)^{3 / 4}(\log \log n)^{-11 / 8}
\end{gathered}
$$

on taking

$$
S=(\log n)^{1 / 2}(\log \log n)^{-1 / 4}
$$

This ends the proof of Lemma 1, but we remark that our method can be used to bound $\omega(f(n))$ for a fairly wide ciass of prime-independent, integervalued multiplicative functions. In particular, we obtain

$$
\begin{equation*}
\omega(d(n)) \ll\left(\frac{\log n}{\log _{2} n \log _{3} n}\right)^{1 / 2} \tag{3.3}
\end{equation*}
$$

Namely,

$$
\begin{gathered}
\omega(d(n))=\omega\left(\prod_{\alpha_{i} \leq S}\left(\alpha_{i}+1\right) \prod_{\alpha_{i}>S}\left(\alpha_{i}+1\right)\right) \\
\leq \omega\left(\prod_{\alpha_{i} \leq S}\left(\alpha_{i}+1\right)\right)+\sum_{\alpha_{i}>S} \omega\left(\alpha_{i}+1\right) \\
\ll \sum_{p \leq S+1} 1+\sum_{\alpha_{i}>S} \log \alpha_{i} / \log _{2} \alpha_{i} \ll S / \log S+\sum_{\alpha_{i}>S} \log _{2} n / \log _{3} n \\
\ll \frac{S}{\log S}+\frac{\log n}{S \log _{3} n} \ll\left(\frac{\log n}{\log _{2} n \log _{3} n}\right)^{1 / 2}
\end{gathered}
$$

on taking

$$
S=\left(\frac{\log n \log _{2} n}{\log _{3} n}\right)^{1 / 2}
$$

where we used again (3.2). Nore that the order of $d(d(n))$ is closely related to the order of $\omega(d(n))$, since trivially

$$
d(n)=\sum_{\delta \mid n} 1 \geq \sum_{\delta \mid n} \mu^{2}(\delta)=2 \omega(n)
$$

hence $\omega(n) \ll \log d(n), \omega(d(n)) \ll \log d(d(n))$, and on the cther hand

$$
\log d(n)=\sum_{i=1}^{r} \log \left(x_{i}+1\right) \ll r \log \log n=\omega(n) \log \log n
$$

which then yields

$$
\begin{equation*}
\omega(d(n)) \ll \log d(d(n)) \ll \omega(d(n)) \log \log n . \tag{3.4}
\end{equation*}
$$

We also remark that (3.3) remains valid if $d(n)=d_{2}(n)$ is replaced by $d_{k}(n)$ ($k \geq 2$ fixed), which represents the number of ways n can be written as a product of k facters. This is a multiplicative function satisfying

$$
d_{k}\left(p^{\alpha}\right)=\frac{(\alpha+1) \ldots(\alpha+k-1)}{(k-1)!}
$$

Having at our disposal Lemma 1, it is a fairly simple matter to prove (2.3) and (2.5). Namely, from (1.1) we have by the Cauchy-Schwarz inequality

$$
\begin{equation*}
a(n)=P\left(\alpha_{1}\right) \ldots P\left(\alpha_{r}\right)<\exp \left\{C \sum_{i=1}^{r} \alpha_{i}^{1 / 2}\right\}<\exp \left(C(\omega(n) \Omega(n))^{1 / 2}\right) \tag{3.5}
\end{equation*}
$$

It follows that

$$
\begin{gathered}
a(a(n))<\exp \left(C\left(\omega(a(n)) \Omega(a(n))^{1 / 2}\right)\right. \\
\leqslant \exp \left(C_{1}\left\{(\log n)^{3 / 4}\left(\log _{2} n\right)^{-11 / 8}\left(\log n / \log _{2} n\right)\right\}^{1 / 2}\right)= \\
=\exp \left(C_{1}(\log n)^{7 / 8}\left(\log _{2} n\right)^{-19 / 16}\right),
\end{gathered}
$$

since asing (1.2) we have

$$
\Omega(a(n)) \leq \frac{\log a(n)}{\log 2}<\frac{\log n}{\log \log n}
$$

To prove (2.5) we use induction (trivially $c_{1}=1$ and $c_{2} \leq 7 / 8$ by (2.3)) and (3.5) with n replaced by $a^{(r-1)}(n)$. This gives by Lemma 1 , for $r \geq 3$,

$$
\begin{aligned}
a^{(r)}(n) & =a\left(a^{(r-1)}(n)\right)<\exp \left(C\left\{\omega\left(a\left(a^{(r-2)}(n)\right)\right) \Omega\left(a^{(r-1)}(n)\right)\right\}^{1 / 2}\right) \\
& <\exp \left(C_{1}\left\{\left(\log a^{(r-2)}(n)\right)^{3 / 4} \log a^{(r-1)}(n)\right\}^{1 / 2}\right) \\
& <\exp \left(C_{2}(\log n)^{\left(3 c_{r-2}+4 c_{r-1}\right) / 8}\right),
\end{aligned}
$$

where $C_{2}>0$ possibly depends on r. Hence (2.4) holds with c_{r} satisfying (2.5). We ould have also obtained (2.4) with certain negative powers of $\log _{2} n$ multiplying $(\log n)^{c r}$, but th's did not seem of great importance.

4. Proof of the asymptotic formula for iterates

In this section we shall prove the asymptotic formula (2.6) of Th. 2. The proof will use the following

Lemma 2. For $j \geq 1$ and $k \geq 2$ we have uniformly

$$
\sum_{n \leq x, a^{(f)}(n)=k} 1=d_{l, k} x+O\left(x^{1 / 2} \log ^{2} x\right)
$$

with suitable constants $d_{j, k} \geq 0$. Morecver for some suitable constants C_{1}, $C_{2}, C_{3}>0$

$$
\begin{equation*}
d_{j, k} \leq C_{1} \exp \left(-C_{2} \log \left(C_{3} 2^{j k}\right) \log \log \left(C_{3} 2^{j k}\right)\right) \tag{4.2}
\end{equation*}
$$

Proof. For $j=1$ (4.1) and (4.2) reduce to a result proved by A. Ivić [7], so that we can suppose $j \geq 2$. Note that in the terminology of Ivić-Tenenbaum [9] the function $f(n)=a^{(j)}(n)(j \geq 1$ fixed) is an s-function. This means that $f(n)=f(s(n))$, where $s=s(n)$ is the squarefull part of $n(s$ is squarefull if $p^{2} \mid s$ whenever p is a prime such that $\left.p \mid s\right)$. Hence frcm [9] we have (4.1) with

$$
\begin{equation*}
0 \leq d_{j, k}=6 \pi^{-2} \sum_{s=1, a j^{\prime \prime}(s)=k}^{\infty}\left(s \prod_{p \mid s}(1+1 / p)\right)^{-1} \tag{4.3}
\end{equation*}
$$

where summation is over all squarefull s (empty sum being understood as zero). Let s_{1} be the smallest squarefull s for which $a^{(j)}(s)=k$ (if no su ch s_{1} exists, then $d_{j, k}=0$). Using multiplicativity and the properties of the partition function we have $a(n) \leq n^{1 / 2}$ for $n \geqslant n_{0}$, which combined with (1.2) gives, for $j \geq 2$,

$$
\begin{aligned}
& k=a^{(j)}\left(s_{1}\right) \leq\left(a\left(s_{1}\right)\right) 2^{1-\jmath} \leq C_{0} \exp \left(C_{1} 2^{-\jmath} \log s_{1} / \log \log s_{1}\right), \\
& \left.s_{1} \geq \exp \left(C_{2} \log \left(2^{j} k / C_{0}\right) \log \log \left(2^{j} k\right) C_{0}\right)\right),
\end{aligned}
$$

and

$$
d_{j, k} \leq 6 \pi^{-2} \sum_{s \geq s_{1}} s^{-1} \ll s_{1}^{-1 / 2} \leq C_{1} \exp \left(-C_{2} \log \left(C_{3} 2^{j k}\right) \log \log \left(C_{3} 2^{j k}\right)\right)
$$

as asserted. Here we used the fact that the elementary formula

$$
\sum_{s \leq x_{1}} 1=\frac{\zeta(3 / 2)}{\zeta(3)} x^{1 / 2}+O\left(x^{1 / 3}\right)
$$

gives by partial summstion

$$
\sum_{s \geq y} s^{-1} \ll y^{-1 / 2}
$$

A more careful argument, based on Th. 1, would give
$d_{j, k} \leq C_{1} \exp \left(-C_{2}(\log (k+1))^{C_{3}^{j}}\right)\left(C_{3}=\sqrt{8 / 7} ; C_{1}, C_{2}>0, k \geq 2, j \geq j_{0}\right)$.
We pass now to the procf of Th. 2. We shall use only the weak bound $K(n) \leq \log n\left(n \geq n_{0}\right)$, although $K(n) \ll \log _{3} n$ follows easily from Th. 1. We can write

$$
\begin{equation*}
\sum_{n \leq x} K(n)=\sum_{1 \leq k \leq \log x}\left(\sum_{n \leq x, K(n)=k} 1\right) . \tag{4.5}
\end{equation*}
$$

If $K(n)=1$, this means that n is squarefree. Hence

$$
\sum_{\cdots \leq x, K(n)=1} 1=\sum_{n \leq x} \mu^{2}(n)=6 \pi^{-2} x+O\left(x^{1 / 2}\right)
$$

Since $a(n)=1$ is equivalent to n being squarefree, this means that if $K(n)=k$ $(k \geq 2)$, then we must have $a^{(k-1)}(n)=r, r$ squarefrec and $r>1$. Hence for $k \geq 2$ Lemma 2 gives

$$
\begin{aligned}
& \sum_{n \leq x, K(n)=k} 1=\sum_{n \leq x, a(k-1)(n)=r, 1<r=\text { squarefree }} 1 \\
& =\sum_{2 \leq r \leq x^{\varepsilon}} \mu^{2}(r)\left(d_{k-1, r} x+O\left(x^{1 / 2} \log ^{2} x\right)\right) \\
& =\left(\sum_{r=2}^{\infty} \mu^{2}(r) d_{k-1, r}\right) x+O\left(x^{1 / 2+\varepsilon}\right),
\end{aligned}
$$

with the error term uniform in k for any fixed $\varepsilon>0$. Thus we obtain

$$
\begin{aligned}
& \sum_{2 \leq k \leq \log x} \sum_{n \leq x, K(n)=k} 1=x \sum_{2 \leqslant k \leqslant \log x} \sum_{r=2}^{\infty} \mu^{2}(r) d_{k-1}, r+O\left(x^{1 / 2+\varepsilon}\right) \\
= & x \sum_{k=2}^{\infty} \sum_{r=2}^{\infty} \mu^{2}(r) d_{k-1, r}+O\left(x^{1 / 2+\varepsilon}\right)+O\left(x \sum_{k>\log x} \sum_{r=2}^{\infty} \mu^{2}(r) d_{k-1, r}\right) .
\end{aligned}
$$

Using (4.2) it is seen that the last double s.m is majorized by

$$
\begin{gathered}
\sum_{k>\log x} \sum_{r=2}^{\infty} \exp \left(-C_{2} \log \left(C_{4} 2^{k} r\right) \log \log \left(C_{4} 2^{k} r\right)\right) \\
\ll \exp \left(-C_{5} 2^{\log x}\right) \sum_{r=2}^{\infty} \exp \left(-C_{2} \log r \log \log \left(C_{4} r\right)\right) \ll x^{-A}
\end{gathered}
$$

for any fixed $A>0$. Inserting the preceding estimates in (4.5) we obtain Th. 2 with

$$
E=6 \pi^{-2}+\sum_{k=2}^{\infty} \sum_{r=2}^{\infty} \mu^{2}(r) d_{k-1}, r .
$$

Trivially $E>1$, since $K(n)=1$ for squarefree n (which have density $6 \pi^{-2}$) and $K(n) \geq 2$ for other n.

We conclude by making two remarks. If $0 \leq F(n) \ll \exp (C n)$, then our arguments would give an asymptotic formula analogous to (2.6) for the sum of $F(K(n))$. The second remark concerns the constant B_{r} in the asymptotic formula (1.8). It is easy to see that $\lim B_{r}=1$, but it is also possible to show that B_{r} converges very quickly to 1 . Namely we have

$$
x^{-1} \sum_{n \leq x} a^{(r)}(n)=x^{-1} \sum_{k \leq x^{\mathrm{E}}} \sum_{n \leq x, a a^{(r)}(n)=k} k,
$$

hence using (4.1), (4.2) and letting $x \rightarrow \infty$ we obtain

$$
B_{r}=\sum_{k=1}^{\infty} k d_{r, k} .
$$

Similarly from

$$
x^{-1} \sum_{n \leq x} 1=x^{-1} \sum_{k \leq x e} \sum_{n \leq x, a(v)(n)=k} 1
$$

we obtain

$$
1=\sum_{k=1}^{\infty} d_{r, k} .
$$

Using then (4.4) we obtain

$$
\begin{equation*}
0 \leq B_{r}-1=\sum_{k=2}^{\infty}(k-1) d_{r, k} \leqslant \exp \left\{-C_{2}(\log 3)^{c}\right\} \tag{4.6}
\end{equation*}
$$

for $r \geq r_{0}$ and some $C>1, C_{2}>0$. Presumably a lower bound for $B_{r}-1$ analogous to (4.6) also holds for infinitely many r, but this does not seem easy to show. Perhaps even $B_{r}=1$ for $r \geq r_{1}$ might be true; this would follow from (1.10).

REFERENCES

[1] R. Bellm an and H. N. Shapiro: On a problem in additive number theory, Annals of Math. 49 (1948), 333-340.
[2] P. E r d 8 sand I. K á ta i: On the growth of $d_{k}(n)$, Fibonacci Quart. 7(1969), 267-274.
[3] P. Erdös and I. Kátai: On the sum $d_{4}(n)$, Acta Scien. Math. Szeged 30 (1969), 313-324.
[4] P. Erdős and A. Ivić: The distribution of values of a certain class of arithmetic functions at consecutive integers, Coll. Soc. J. Bolyai, Proceedings Budapest Conference 1987, to appear.
[5] I. N. Herstein: Topics in Algebra, Ginn, Waltham/Toronto/London, 1963.
[6] A. Ivici: The distribution of values of the emumerating function of non-isomorphic Abelian groups of finite order, Arch. Math. 30 (1978), 374-379.
[7] A. I v ić: On the number of Abelian groups of a given order and on certain related multiplicative functions, J. Number Theory 16 (1983), 119-137.
[8] A. I vić: The Riemann zeta-function, John Wiley \& Sons, New York, 1985.
[9] A. Ivić and G. Tenenbaum: Local densities over integers free of large prime factors, Quart. J. Math. Oxford (2) 37 (1986), 401-417.
[10] J. Knopfmacher: Abstract Analytic Number Theory, North-Holland, Amsterdam/Oxford, 1975.
[11] G. Kolesnik: On the number of Abelian groups of a given order, J. Reine Angew. Math. 329 (1981), 164-175.
[12] E. Krätzel: Die maximale Ordnung der Anzahl der wesentlich verschiedenen Abelschen Gruppen n-ter Ordnung, Quart. J. Math. (2) (1970), 273-275.
[13] S. Ramanujan: Collected Papers, Chelsea, New York, 1962.

F. Erdös
Matematikai Kutató Intézete
Reáltanoda utca 13-15
H-1053 Budapest V
Hungary

A. Ivić
Katedra Matematike RGF-a
Universiteta u Beogradu Djušina 7, 11000 Beograd
Yugoslavia

