ON THE NUMBER OF DISTINCT INDUCED SUBGRAPHS OF A GRAPH

P. ERDÖS and A. HAJNAL

Mathematical Institute of the Hungarian Academy of Sciences, Reáltanoda utca 13-15, 1053 Budapest, V., Hungary

Let G be a graph on n vertices, $i(G)$ the number of pairwise non-isomorphic induced subgraphs of G and $k \geqslant 1$. We prove that if $i(G)=o\left(n^{k+1}\right)$ then by omitting $o(n)$ vertices the graph can be made (l, m)-almost canonical with $l+m \leqslant k+1$.

0. Introduction

We need some notation to state our main result.

Definition 1. $G=\langle V, E\rangle$ is l-canonical if there is a partition $\left\langle A_{i}: 0 \leqslant i<l\right\rangle$ of the vertex set V such that for $i, j<l, x, x^{\prime} \in A_{i}, y, y^{\prime} \in A_{j}$

$$
\{x, y\} \in E \Leftrightarrow\left\{x^{\prime}, y^{\prime}\right\} \in E .
$$

Definition 2. For $G=\langle V, E\rangle, G^{\prime}=\left\langle V, E^{\prime}\right\rangle$ put $G \Delta G^{\prime}=\left\langle V, E \Delta E^{\prime}\right\rangle$, the symmetric difference of G and G^{\prime}.

Definition 3. For $G=\langle V, E\rangle$ set $i(G)=|\{G[W]: W \subset V\} / \cong|$ i.e. denote by $i(G)$ the number of pairwise non-isomorphic induced subgraphs of G.

Definition 4. $G=\langle V, E\rangle$ is (l, m)-almost canonical if there is an l-canonical graph $G_{0}=\left\langle V, E_{0}\right\rangle$ such that all the components of $G \Delta G_{0}$ have sizes at most m.

During the Cambridge Combinatorial conference held in March 1988 the second author stated the following conjecture.

Assume $i(G)=o\left(n^{2}\right)$. Then one can omit $o(n)$ vertices of G in such a way that the remaining graph is either complete or empty.

This was proved later independently by the two of us and by Alon and Bollobás [1]. We can actually prove the following stronger result.

Theorem 1. $\forall \varepsilon>0 \forall k \geqslant 1 \exists \delta>0 \forall n \forall G$ with n vertices $i(G) \leqslant \delta n^{k+1} \Rightarrow \exists W \subset V$, $0012 \cdot 365 \mathrm{X} / 89 / \$ 3.50$ © 1989, Elsevier Science Publishers B. V. (North-Holland)
$|W| \leqslant \varepsilon n$, such that $G[V \backslash W]$ is (l, m)-almost canonical for some l, m satisfying $l+m \leqslant k+1$.

Note first that this implies the conjecture, as $l+m \leqslant 2$ implies $l=m=1$. We would like to mention that this strong formulation of the theorem was inspired by a result of Zs. Nagy, who proved and strengthened a conjecture of the second author concerning infinite graphs. He proved that if for a graph $G=\langle\omega, E\rangle$, where ω is the set of natural numbers, $i(G)$ is less than the continuum, then for some $l, m<\omega$, the graph G is (l, m)-almost canonical. His result extends to weakly compact cardinals κ in place of ω. This result will be published elsewhere.

The main aim of this paper is to prove Theorem 1. This will be done in Section 1. In Section 2 we will discuss some further results and problems.

1. Proof of Theorem 1.

First we list our notation. Most of it is standard; we list it for the convenience of the reader. However, we will point out that, applying double-think, we use the convention $n=\{0, \ldots, n-1\}$ whenever it is convenient for us.
(1) For a set $A,[A]^{2}=\{\{u, v\}: u, v \in A \wedge u \neq v\}$, the set of unordered pairs of $A ; G[W]=\left\langle V, E \cap[W]^{2}\right\rangle$ is the subgraph of $G=\langle V, E\rangle$ induced by W.
(2) For $A, B \subset V$ with $A \cap B=\emptyset,[A, B]=\{\{u, v\}: u \in A \wedge v \in B\} ; G[A, B]=$ $\langle A \cup B, E \cap[A, B]\rangle$ is the bipartite subgraph of G induced by A and B.
(3) \bar{G} is the complement of G, i.e. $\bar{G}=\left\langle V,[V]^{2} \backslash E\right\rangle$.
(4) For $x \in V, \quad A \subset V, \quad \Gamma(x, A)=\{y \in A:\{x, y\} \in E\}$, and $\Gamma(x)=\Gamma(x, V)$; $d(x, A)=|\Gamma(x, A)|, d(x, V)=d(x)$. We let $\bar{\Gamma}, \tilde{d}$ denote the same functions for \bar{G}.
(5) $(A)^{r}$ is the set of sequences of length r formed for the elements of A. For $x \in(A)^{r}$ and $i<r, x_{i}$ is the i thember of the sequence. For $r=0$, $(A)^{r}=\{\emptyset\}$, For $x \in(V)^{r}, \varphi \in(2)^{r}$ put

$$
\Gamma(x, \varphi)=\left\{z \in V: \forall i<r\left(\left\{z, x_{i}\right\} \in E \Leftrightarrow \varphi_{i}=0\right)\right\} .
$$

Note that $\Gamma(\langle u\rangle,\langle 0\rangle)=\Gamma(u), \quad \Gamma(\langle u\rangle,\langle 1\rangle)=\bar{\Gamma}(u)$ for $u \in V$, and $\Gamma(\emptyset, \emptyset)=V$.
(6) $\Delta(G)=\max \{d(x): x \in V\} ; \Delta(G, A, B)=\max \{d(x, B): x \in A\}$.
(7) For $A \cap B=\emptyset, U, W \subset A \cup B$ put $G[U]_{\triangle A, B} G[W]$ if there is an isomorphism π between $G[U]$ and $G[W]$ such that $\pi(U \cap A)=\pi(W \cap A)$.
(8) For $A \cap B=\emptyset$ we write

$$
i(G, A, B)=|\{G[W]: W \subset A \cap B\}| \cong_{A, B} \mid
$$

i.e. the number of the equivalence classes with respect to the equivalence relation $\cong_{A, B}$. We will often use the fact that

$$
i(G, A, B) \geqslant i(G[A, B]) .
$$

Our proof of Theorem 1 is quite lengthy. First, by proving a sequence of easy lemmas, we will establish that the theorem is (almost) true without the restriction $l+m \leqslant k+1$. This will be done in Lemma 9 .

Then, in Lemma 10, we prove that this implies the theorem. We would like to point out that our proof yields a similar result in case k tends to infinity slowly (e.g. if $k=o\left(\log _{3}(n)\right)$), but we do not go into the technical details.

First we give a rough estimate for $i(G)$ in the case of a disconnected graph.
Lemma 0. Assume G has r components of sizes $n_{i}: i<r$. Then
(a) $i(G) \geqslant(r!)^{-1} \Pi_{i<r} n_{i}$
(b) If $n_{i} \geqslant$ l for $i<r$ then $i(G) \geqslant\left(\frac{t}{i}\right)^{\prime}$.

Lemma 1. Assume $\left\{x_{i}: i<l\right\}, A_{i}: i<l$ are pairwise disjoint subsets of V, $\left[\left\{x_{i}: i<l\right\}\right]^{2} \cap E=\emptyset, \quad U_{i<i} A_{i}=A,[A]^{2} \subset E, \Gamma\left(x_{i}, A\right)=A_{i}$ and $\left|A_{i}\right| \geqslant t$ for $i<l$. Then

$$
i(G) \geqslant\binom{ t}{l} .
$$

Lemma 2. For every k there is an l such that whenever $\Delta(G)=o(n)$ and $i(G) \leqslant O\left(n^{k}\right)$ then there is a $W_{n} \subset V,\left|W_{n}\right|=o(n)$ such that

$$
\Delta\left(G\left[V \backslash W_{n}\right]\right) \leqslant l .
$$

Lemma 2 is an important tool in our proof but we can only prove it later, after the proof of Lemma 8. First we prove a consequence of it.

Lemma 3. For every k there is an l such that whenever $c>0 ; A, B \subset V$; $A \cap B=\emptyset ;|A|,|B| \geqslant c n, \Delta(G, A, B)=o(n)$ and $i(G, A, B)=O\left(n^{k}\right)$ then there is $a W_{n} \subset V,\left|W_{n}\right|=o(n)$ such that

$$
\Delta\left(G\left[A \backslash W_{n}, B \backslash W_{n}\right]\right)<l .
$$

Proof. By omitting $o(n)$ vertices, we may assume $\Delta(G[A, V])=o(n)$. By averaging we can see that for $C \subset A$ or $C \subset B, C \neq \emptyset$ and for every integer m

$$
\left|\left\{y \in B: d(y, C) \geqslant \frac{1}{m}|C|\right\}\right|=o(n)
$$

and

$$
\left|\left\{y \in A: d(y, C) \geqslant \frac{1}{m}|C|\right\}\right|=o(n) .
$$

Using these, we can either pick, for every m and for sufficiently large n, an induced subgraph of $G[A, B]$ with m components, each having size at least $\frac{1}{m} n^{\frac{1}{2}}$, or we can omit $o(n)$ vertices from $A \cup B$ so that for the remaining graph
$G\left[A^{\prime}, B^{\prime}\right]$ we have $\Delta\left(G\left[A^{\prime}, B^{\prime}\right]\right) \leqslant n^{\frac{1}{2}}$. In the first case, by Lemma 0. a, we have

$$
i(G[A, B]) \geqslant O\left(\frac{l}{m!m^{m}} n^{m / 2}\right) \quad \text { for every } m
$$

In the second case, if the conclusion of Lemma 3 does not hold for an l, we can choose an induced subgraph of $G\left[A^{\prime}, B^{\prime}\right]$ having at least $n^{\frac{1}{2}} / 2 l$ components of sizes l. Then, by Lemma 0.b,

$$
i(G[A, B]) \geqslant \frac{n^{l 2}}{(2 l)^{\prime}}
$$

Hence $l \geqslant 2 k+2$ satisfies the requirements of the Lemma.
Lemma 4. Assume $r \geqslant 1, x \in(V)^{r}, \varphi_{0} \neq \varphi_{1} \in(2)^{r}$. Let $A=\Gamma\left(x, \varphi_{0}\right), \quad B=$ $\Gamma\left(x, \varphi_{1}\right)$. Then

$$
i(G) \geqslant i(G, A, B) n^{-r} .
$$

Proof. Assume that $W_{i} \subset A \cup B$ for $i \leqslant n^{r}$ and that the $G\left[W_{i}\right]$ are pairwise non-equivalent with respect to $\cong_{A, B}$. We claim that the graphs

$$
G_{i}=\left[W_{i} \cup\left\{x_{\mathrm{v}}: v<r\right\}\right], \quad i \leq n^{\prime}
$$

are not pairwise isomorphic. Indeed, otherwise for some $i \neq j \leqslant n^{r}$ there is an isomorphism π of G_{i} and G_{j} with $\pi\left(x_{v}\right)=x_{v}$ for $v<r$. Then π maps $W_{i} \cap A$ onto $W_{j} \cap A$, a contradiction.

Lemma 5. Let $c>0, r, l \geqslant 1, y \in V, x \in(V)^{r}, x_{i} \notin \Gamma(y)$ for $i<r$. Assume further that there are $\varphi_{j} \in(2)^{\gamma}, j<l$ such that

$$
\left|\Gamma(y) \cap \Gamma\left(x, \varphi_{j}\right)\right| \geqslant c n \quad \text { for } j<l .
$$

Then

$$
i(G) \geqslant(n r!)^{-1}(c n)^{l}
$$

Proof. For each sequence $v \in(c n)^{t}$ let W_{v} be a set such that

$$
\{y\} \cup\left\{x_{i}: i<r\right\} \subset W_{v} \subset\{y\} \cup\left\{x_{i}: i<r\right\} \cup \bigcup_{j=1}\left(\Gamma(y) \cap \Gamma\left(x, \varphi_{j}\right)\right)
$$

and

$$
\left|W_{v} \cap \Gamma(y) \cap \Gamma\left(x, \varphi_{j}\right)\right|=v_{j}, \quad \text { for } \quad j<l .
$$

If $n r!+1$ of the different $G\left[W_{v}\right]$ are isomorphic, then $r!+1$ are pairwise isomorphic by isomorphisms keeping y fixed. Such an isomorphism keeps the set $\left\{x_{i}: i<r\right\}$ fixed. Hence there are $v \neq v^{\prime}$ and an isomorphism π of $G\left[W_{v}\right]$ and $G\left[W_{v}\right]$ such that $\pi(y)=y$, and $\pi\left(x_{i}\right)=x_{i}$ for $i<r$. But for any such π

$$
\pi\left(\Gamma(y) \cap \Gamma\left(x, \varphi_{j}\right) \cap W_{v}\right)=\Gamma(y) \cap \Gamma\left(x, \varphi_{j}\right) \cap W_{v}, \quad \text { for } \quad j>l .
$$

Hence $v=v^{\prime}$, a contradiction.

Lemma 6. Assume $x \in(V)^{t}$. For $y \in V$ let

$$
f_{x}(y)=\max \left\{\min \{d(y, \Gamma(x, \varphi)), \bar{d}(y, \Gamma(x, \varphi))\}: \varphi \in(2)^{\prime}\right\}
$$

and

$$
g_{x}(n)=\max \left\{f_{x}(y): y \in V \backslash\left\{x_{i}: i<l\right\}\right\} .
$$

Assume $g_{x}(n)=o(n)$. Then there are $W_{n} \subset V$ and G_{0} such that $\left|W_{n}\right|=o(n), G_{0}$ is $\leqslant 2^{\prime}$-canonical on $V \backslash W_{n}$ and $\Delta\left(G\left[V \backslash W_{n}\right] \Delta G_{0}\right)=o(n)$. Moreover, each of the classes of the canonical partition coincides with some $\Gamma(x, \varphi) \backslash W_{n}$.

Proof. Put $A_{\varphi}=\Gamma(x, \varphi)$. We claim that we can omit $o(n)$ vertices W_{n} so that for $A_{\varphi}^{\prime}=A_{\varphi} \backslash W_{n}$

$$
\min \left\{\Delta\left(G, A_{\psi}^{\prime}, A_{\psi}^{\prime}\right), \Delta\left(\bar{G}, A_{\psi}^{\prime}, A_{\psi}^{\prime}\right)\right\}=o(n)
$$

and

$$
\min \left\{\Delta\left(G\left[A_{\varphi}\right]\right), \Delta\left(\bar{G}\left[A_{\varphi}^{\prime}\right]\right)\right\}=o(n),
$$

holds for $\varphi \neq \psi \in(2)^{\prime}$. Indeed if for example the first of these claims is false for some $\varphi \neq \psi \in(2)^{\prime}$, then for some $c>0$ and infinitely many n, we would have say

$$
\left|\left\{x \in A_{\varphi}^{\prime}: d\left(x, A_{\psi}^{\prime}\right) \geqslant c n\right\}\right| \geqslant c n
$$

and

$$
\left|\left\{x \in A_{\varphi}^{\prime}: \bar{d}\left(x, A_{\psi}^{\prime}\right) \geqslant c n\right\}\right| \geqslant c n .
$$

Then, by the assumption, for infinitely many n,

$$
\left|\left\{x \in A_{\varphi}^{\prime}: d\left(x, A_{\psi}^{\prime}\right)>\frac{3}{4}\left|A_{\psi}^{\prime}\right|\right\}\right| \geqslant c n
$$

and

$$
\left|\left\{x \in A_{\varphi}^{\prime}: \vec{d}\left(x, A_{\psi}^{\prime}\right)>\frac{3}{4}\left|A_{\psi}^{\prime}\right|\right\}\right| \geqslant c n
$$

hence for some $y \in A_{\psi}^{\prime}, f_{x}(y)>\frac{1}{2} n$ for infinitely many n, a contradiction.
Lemma 7. For every k there is an l such that whenever $y \in V, A \subset \Gamma(y)$, $B \subset \bar{\Gamma}(y), c>0,|A|,|B| \geqslant c n$ and $i(G) \leqslant O\left(n^{k}\right)$ then there are $W_{n} \subset V$ and $a G_{0}$ for which $\left|W_{n}\right|=o(n), G_{0}$ is l-canonical on $(A \cup B) \backslash W_{n}$ and

$$
\Delta\left(G\left[A \backslash W_{n}, B \backslash W_{n}\right] \Delta G_{0}\right) \leqslant l .
$$

Proof. We use the notation f_{x}, g_{x} introduced in the proof of Lemma 6 for the graph $G^{\prime}=G[A, B]$ with $V^{\prime}=A \cup B$. For an $x \in(V)^{\prime}$ and $i \leqslant r$ we denote the restriction of x to i by $x \mid i$. For every fixed l and for every $n \geqslant l$ we define a sequence $\left\langle x_{i}: i<l\right\rangle$ by recursion on i, using a greedy algorithm: we let x_{i} be an element of $V^{\prime} \backslash\left\{x_{j}: j<i\right\}$ satisfying

$$
f_{x \mid 0}\left(x_{i}\right)=g_{x \mid /}(n)
$$

We now claim that $g_{x}(n)=o(n)$ for an $x \in\left(V^{\prime}\right)^{t_{1}}$ with $l_{1} \leqslant 2 k+3$. Indeed if
$g_{x}(n) \geqslant c_{1} n$ for some $c_{1}>0$ for infinitely many n, then for all these n we have

$$
\forall_{1}<l_{1} \exists \varphi \in(2)^{i}\left(d\left(x_{i}, \Gamma(x \mid i, \varphi)\right) \geq c_{1} n \wedge \bar{d}\left(x_{i}, \Gamma(x \mid i, \varphi) \geqslant c_{1} n\right) .\right.
$$

Then either there is a subsequence $\left\{x_{i,}: v<k+2\right\} \subset A$ such that for $k+2$ functions $\psi \in(2)^{k+2}$ we have

$$
\left|B \cap \Gamma\left(\left\langle x_{i_{r}}: v<k+2\right\rangle, \psi\right)\right| \geqslant c_{1} n
$$

or the same holds when the roles of A and B are interchanged. This however, by Lemma 5 , contradicts our assumption. This proves the claim. The claim and Lemma 6 imply that there is a $2^{h^{\prime}}$-canonical graph G_{0} and $W_{n}^{\prime} \subset V$ such that $\left|W_{n}^{\prime}\right|=o(n)$ and

$$
\Delta\left(G^{\prime}\left[V^{\prime} \backslash W_{n}^{\prime}\right] \Delta G_{0}\right)=o(n)
$$

Let $\left\{A_{j} ; j<2^{h^{\prime}}\right\}$ be the canonical classes of G_{0}. We may assume (increasing l_{1} to $2 l_{1}$), that $A_{j} \subseteq A$ or $A_{j} \subset B$, hence we may assume that $G_{0}\left[A_{j}\right]=G^{\prime}\left[A_{j}\right]$ has no edges. By Lemmas 3 and 4, using the last clause of Lemma 6, we can omit W_{n}, $\left|W_{n}\right|=o(n)$ vertices in such a way that $\Delta\left(G^{\prime}\left[V \backslash W_{n}\right] \Delta G_{0}\left[V^{\prime} \backslash W_{n}\right]\right) \leqslant l$ with $l \leqslant l_{1}+2 k+2 \leqslant 4 k+5$.

Lemma 8. For all k there exists an 1 such that whenever there are disjoint subsets $\left\{x_{i}: i<l\right\}, A_{i}: i<l$ and $c>0$ satisfying $\left[\left\{x_{i}: i<l\right\}\right]^{2} \cap E=\emptyset$ and

$$
A=\bigcup_{i<1} A_{i}, \quad \Gamma\left(x_{i}, A\right)=A_{i} ;\left|A_{i}\right| \geqslant c n \quad \text { for } \quad i>l
$$

then $i(G) \geqslant c_{1} n^{k}$ for some $c_{1} \geqslant 0$ infinitely often.
Proof. Assume that $\left\{x_{i}: i<l\right\}$ and $\left\{A_{i}: i<l\right\}$ are as above. We prove that $i(G) \geqslant c_{1} n^{k}$ holds for some $c_{1}>0$ infinitely often, provided l is large enough. By Lemma 7, there exists an l_{1} and l_{1}-canonical graphs $G_{i}:<l$ such that

$$
\Delta\left(G\left[A_{i}, \bigcup_{j \neq i, i<1} A_{i}\right] \Delta G_{i}\right) \leqslant I_{1} .
$$

Using a Ramsey type argument we can select a subsequence $\left\{x_{i, j}: j<l_{2}\right\}, c_{2}>0$ and $A_{i,}^{\prime} \subset A_{j}$ such that by putting $y_{i}=x_{i j}, A_{j}^{\prime \prime}=A_{i,}^{\prime}$ we have $\left|A_{j}^{\prime \prime}\right| \geqslant c_{2} n$ and either
(1) $\left[A_{j}^{\prime \prime}, A_{f}^{\prime \prime}\right] \subset E$, for $j<t<l_{2}$
or

$$
\begin{equation*}
\left[A_{j}^{\prime \prime}, A_{t}^{\prime \prime}\right] \cap E=\emptyset, \text { for } j<t<l_{2}, \tag{2}
\end{equation*}
$$

provided l is large enough compared to k, l_{1}, and l_{2}. If case (2) holds, by Lemma 0 (a) we have

$$
i(G) \geqslant i\left(G\left[\left\{x_{j} ; j<l_{2}\right\} \cup \bigcup_{j<L_{2}} A_{j}^{\prime \prime}\right]\right) \geqslant c_{3} n^{\prime_{2}}
$$

for some $c_{3}>0$. If case (1) holds, then either for some $c_{4}>0$ and for more than
$l_{2} / 2$ values of $\left.j, G ँ A_{j}^{\prime}\right]$ has a component of size at least $c_{4} n^{\frac{1}{2}}$ and in this case Lemma 0 (a) implies that $i(\hat{G}) \geqslant c_{5} n^{1 / 4}$ for some $c_{5}>0$, or else we may assume that for more than $l_{2} / 2 j$, the components of $\bar{G}\left[A_{j}^{\prime}\right]$ have sizes at most k. This follows from Lemma $0(\mathrm{~b})$. Then for some $c_{6}>0$ we can choose $\tilde{A}_{j} \subset A_{j}^{\prime \prime}$, $\left|\bar{A}_{j}\right| \geqslant c_{6} n$ for more than $I_{2} / 2$ values of $j<I_{2}$ in such a way that $\left[\bar{A}_{j}\right]^{2} \subset E$. By Lemma 1, we have

$$
i(G) \geqslant\binom{ c_{6} n}{l_{2} / 2} .
$$

We are now in a position to prove Lemma 2.
Proof of Lemma 2. Just as in the proof of Lemma 3, if the lemma fails with $l=2 k+2$, then we may assume that omitting $o(n)$ vertices W_{n} arbitrarily, $\Delta\left(G\left[V \backslash W_{n}\right]\right) \geqslant n^{\frac{1}{2}}$ holds and that for every $A \subset V, A \neq \emptyset$ and for every $m,|\{x \in V: d(x, A) \geqslant 1 / m|A|\}|=o(n)$. Using these, for every m and sufficiently large n, we can choose disjoint sets $\left\{x_{i}: i<m\right\}, A_{i}: i<m$ in such a way that $\left[\left\{x_{i}: i<m\right\}\right]^{2} \cap E=\emptyset$ and for $A=U_{i>m} A_{i}, \Gamma\left(x_{i}, A\right)=A_{i}$ and $\left|A_{i}\right| \geqslant 1 / m n^{\frac{1}{2}}$ hold for $i<m$. Now applying Lemma 8 for the graphs $G\left[\left\{x_{i}: i<m\right\} \cup A\right]$ we get a contradiction.

Now we can prove our main lemma.
Lemma 9. Assume $i(G)=o\left(n^{k+1}\right), k \geqslant 1$. Then there are $W_{n} \subset V, l$ and a G_{0} such that $\left|W_{n}\right|=o(n), G_{0}$ is l-canonical on $V \backslash W_{n}$ and

$$
\Delta\left(G\left[V \backslash W_{n}\right] \Delta G_{0}\right) \leqslant l .
$$

Proof. We use the notation f_{x}, g_{x} introduced in Lemma 6 and we repeat the greedy algorithm described in the proof of Lemma 7, i.e. for every fixed l and for every $n \geqslant l$ we define a sequence $\left\{x_{i}: i<l\right\}$ by recursion on $i<l$ as follows: x_{i} is an element of $V \backslash\left\{x_{i}: j<i\right\}$ satisfying $f_{x| |}\left(x_{i}\right)=g_{x \mid i}(n)$. If for some l we have $g_{x}(n)=o(n)$, then by Lemma 6 there are $W_{n}^{\prime} \subset V, l_{1}$ and G_{0} such that $\left|W_{n}^{\prime}\right|=o(n), G$ is $2^{t^{t}}$-canonical on $V \backslash W_{n}^{\prime}$ and

$$
\Delta\left(G\left[V \backslash W_{n}^{\prime}\right] \Delta G_{0}\right)=o(n) .
$$

Then, by Lemmas 2, 3, and 4, we can omit $W_{n},\left|W_{n}\right|=o(n)$ vertices so that for some l

$$
\Delta\left(G\left[V \backslash W_{n}\right] \Delta G_{0}\left[V \backslash W_{n}\right]\right) \leqslant l .
$$

Hence we may assume that the following holds infinitely many n :
(*) There is a sequence $\left\{x_{i}: i<l\right\}$ of distinct elements such that

$$
\forall i<l \exists \varphi \in(2)^{\prime} d\left(x_{i}, \Gamma(x \mid i, \varphi) \geqslant c n\right) \wedge \bar{d}\left(x_{i}, \Gamma\left(x_{i}, \varphi\right) \geqslant c n\right)
$$

for some $c>0$.

We may as well assume that (${ }^{*}$) holds for all n and prove that if (*) holds for large enough l, then $i(G) \geqslant c_{0} n^{k+1}$ for some $c_{0}>0$ infinitely often.

First remark that (*) holds for any subsequence of $\left\langle x_{i}: i<l\right\rangle$. Now, by Lemma 5 , we may assume that

$$
\begin{aligned}
& (\forall \varepsilon<2) \mid\left\{0<i<1: x_{i} \in \Gamma\left(\left\langle x_{0}\right\rangle,\langle\varepsilon\rangle\right) \wedge \exists \varphi(\varphi(o)\right. \\
& \left.\left.\quad=1-\varepsilon \wedge d\left(x_{i}, \Gamma(x \mid i, \varphi)\right) \geqslant c n \wedge \bar{d}\left(x_{i}, \Gamma(x \mid i, \varphi)\right)\right) \geqslant c n\right\} \mid \leqslant k+1,
\end{aligned}
$$

as otherwise we are done.
It follows that for either the graph or its complement the following statement is true.

There is a set

$$
T \subset l-\{0\}, \quad|T| \geqslant \frac{l}{2(k+1) 2^{k+1}} \geqslant \frac{l}{5^{k+1}}
$$

such that $\left\{x_{i}: i \in T\right\} \subset \Gamma\left(x_{0}\right)$, and we can omit W_{n} vertices, $\left|W_{n}\right|=o(n)$, of $\bar{\Gamma}\left(x_{0}\right)$ in such a way that for all $i, j \in T$ and for all $z \in \bar{\Gamma}\left(x_{0}\right) \backslash W_{n}, \quad\left\{z, x_{i}\right\} \in E \Leftrightarrow$ $\left\{z, x_{j}\right\} \in E$. Now by a repeated application of this argument we obtain that if $l>4.5^{t_{1,(k+1)}}$ then for either the graph or its complement the following holds:
(1) There is a set $Y=\left\{y_{i}: i<I_{1}\right\},[Y]^{2} \subset E$, a $c_{1}>0$ and a sequence of pairwise disjoint subsets of V such that

$$
\begin{aligned}
& \left|A_{i}\right| \geqslant c_{1} n, A_{i} \subset \bar{\Gamma}\left(y_{i}\right) \text { for } i<l_{1} ; \\
& A_{j} \subset \Gamma\left(y_{i}\right) \wedge A_{i} \cap \Gamma\left(y_{i+1}\right)=A_{i} \cap \Gamma\left(y_{i}\right) \text { for } i<j<l_{1} ;
\end{aligned}
$$

and either $A_{i} \cap \tilde{\Gamma}\left(y_{i+1}\right) \geqslant c_{2} n$ for $i+1<l_{1}$ or $A_{i} \subset \Gamma\left(y_{j}\right)$ for $i<j<l_{1}$, for $c_{2}>0$.
We will assume that (1) holds for G. If in the last statement the first alternative holds, then applying Lemma 5 with $y=y_{t_{1}-1}$ we get that

$$
i(G) \geqslant c_{2} n^{t_{1}-3} \quad \text { with some } \quad c_{3}>0 .
$$

Thus we may assume that $A_{i} \subset \Gamma\left(y_{j}\right)$ for $i<j<l_{1}$. However, in this case Lemma 8 yields $i(\tilde{G}) \geqslant c_{0} n^{k+1}$ provided l_{1} is large enough.

To conclude the proof of Theorem 1, it remains only to prove the following.
Lemma 10. Assume G has n vertices, $i(G)=o\left(n^{k+1}\right)$ for some $k \geqslant 1$. Assume further that I is minimal with respect to the following property:
(*) There are $c>0$ and s and an l-canonical graph $G_{0}=\left\langle V, E_{0}\right\rangle$ with canonical classes $\left\langle A_{i}: i<1\right\rangle,\left|A_{i}\right| \geqslant$ cn for $i<1$ and $\Delta\left(G \Delta G_{0}\right) \leqslant s$.

Then $l \leqslant k$ and we can find $W_{n} \subset V,\left|W_{n}\right|=o(n)$ such that setting $G_{1}=G \Delta G_{0}$ all components of $G_{1}\left[V \backslash W_{n}\right]$ have size at most $m=k+1-l$.

Proof. Set $m=k+1-l$ if $l \leqslant k$ and $m=0$ otherwise. Assume for a contradiction that the claim is not true. Then for some $c_{1}, c_{2}>0, c_{2}<\frac{1}{4} c_{1}$ we can find pairwise disjoint sets $\left\{A_{i}^{\prime}: i<l\right\}$ and a set B such that

$$
\begin{equation*}
\left|A_{i}^{\prime}\right|=c_{1} n, A_{i}^{\prime} \subset A_{i} \text { for } i<l . \tag{1}
\end{equation*}
$$

(2) For $A=\cup_{i<1} A_{i}^{\prime}, B \subset A,|B|=c_{2} n$.
(3) $G_{1}[B]$ consists of components of size $m+1$, and $G_{1}[A]$ has only edges contained in $G_{1}[B]$.
We claim that $i(G[A]) \geqslant c_{3} n^{l+m}$ for some $c_{3}>0$. Let $A_{i}^{\prime \prime}=A_{i}^{\prime} \backslash B$ for $i<l$. Then $\left|A_{i}^{\prime \prime}\right| \geqslant 3 / 4 c_{1} n$. Let now $X, Y \subset A$ and let π be an isomorphism of $G[X]$ and $G[Y]$. Assume further that $\left|X \cap A_{i}^{\prime}\right| \geqslant c_{1} / 2$ for $i<l$.

For $u \in X$ set $\tilde{\pi}(u)=j$ if $\pi(u) \in A_{j}^{\prime}$. Using $\left|X \cap A_{\eta}^{\prime}\right| \geqslant 2|B|$, for large enough n there are $l+1$ elements of $X \cap A_{i}^{\prime \prime}$ with image in $A \backslash B$, hence we can choose $x_{i} \neq y_{i} \in X \cap A_{i}^{\prime \prime}$ with $\pi\left(x_{i}\right), \pi\left(y_{i}\right) \in A \backslash B$ and $\bar{\pi}\left(x_{i}\right)=\bar{\pi}\left(y_{i}\right)$, for $i<l$. Then the minimality of l implies that $\tilde{\pi}\left(x_{i}\right) \neq \tilde{\pi}\left(x_{j}\right)$ for $i \neq j<l$. Using again the minimality of l and the fact that

$$
\left\{x_{i}: i<l\right\} \cup\left\{\pi\left(x_{i}\right): i<l\right\} \subset A \backslash B
$$

we get that if $u, v \notin\left\{x_{i}: i<l\right\}$ then $u, v \in A_{v}^{\prime}$ for some $v<l$ if and only if

$$
(\forall i<l)\left(\left\{u, x_{i}\right\} \in E \Leftrightarrow\left\{v, x_{i}\right\}\right) \in E
$$

and also that if $u, v \notin\left\{\pi\left(x_{i}\right): i<l\right\}$ then $u, v \in A_{v}^{\prime}$ for some $v<l$ if and only if

$$
(\forall i<l)\left(\left\{u, \pi\left(x_{i}\right)\right\} \in E \Leftrightarrow\left\{v, \pi\left(x_{i}\right)\right\}\right) \in E .
$$

Now for each $u \in A_{i}^{\prime} \cap X, \pi(u) \in A_{n\left(x_{i}\right)}$. Indeed, for $u \in A_{i}^{\prime} \cap X, u \neq x_{i}, y_{i}$ we have

$$
\begin{aligned}
& (\forall i<l)\left(\left\{u, x_{i}\right\} \in E \Leftrightarrow\left\{y_{i}, x_{i}\right\} \in E\right) \\
& \quad \Leftrightarrow(\forall i<l)\left(\left\{\pi(u), \pi\left(x_{i}\right)\right\} \in E \Leftrightarrow\left\{\pi\left(y_{i}\right), \pi\left(x_{i}\right)\right\} \in E\right) \\
& \quad \Leftrightarrow \pi(u) \in A_{\pi\left(y_{i}\right)}^{\prime} \\
& \quad \Leftrightarrow \hat{\pi}(u)=\tilde{\pi}\left(x_{i}\right) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\pi\left(A_{i}^{\prime} \cap X\right)=A_{\pi\left(x_{i}\right)} \cap Y \text { for } i<l . \tag{4}
\end{equation*}
$$

Now, for each $i<l, G_{1}\left[A_{i}\right]=G\left[A_{i}\right]$ or $G_{1}\left[A_{i}\right]=\bar{G}\left[A_{i}\right]$. Also, for each $i<j<l$, $G_{1}\left[A_{i}, A_{j}\right]=G\left[A_{i}, A_{j}\right]$ or $G_{1}\left[A_{i}, A_{j}\right]=\bar{G}\left[A_{i}, A_{j}\right]$. Considering this, (4) implies that π is an isomorphism of $G_{1}[X]$ onto $G_{1}[Y]$. In the case $m=0$, (4) implies that $i(G) \geqslant c_{3} n^{\prime}$ for some $c_{3}>0$. In the case $m>0$ and all the components $G_{1}[X \cap B]$ have size at least two, then

$$
\pi(X \cap B)=Y \cap B \quad \text { and } \quad \pi\left(A_{i}^{\prime \prime} \cap X\right)=A_{i}^{\prime \prime} \cap Y \text { for } i<l .
$$

As there are $c_{4} n$ ways to choose the cardinalities $\left[B \cap A_{i}^{\prime}\right]$ for $i<l$, and since $G_{1}[B]$ has $c_{5} n^{m}$ pairwise nonisomorphic subgraphs each having no isolated points, for some $c_{4}, c_{5}>0$, we are done.

2. One more result and some problems

One may conjecture that if G is a strong Ramsey example, then G is close to a random graph, hence $i(G)$ is very large, say exponential. As is shown by the
attempt described in [1], this will be difficult to prove. We only have one result pointing in this direction.

Theorem 2. Assume G is a graph with n-vertices $c>0, k>2 c \log 2$ and

$$
K_{c \log n, c \log n} \neq G, \bar{G} .
$$

Then, for every sufficiently large $n, i(G) \geqslant 2^{\text {ni4k }}$.
Proof. We may assume that there is an $x \in V$ with

$$
d(x) \geqslant\left(n / \log ^{2} n\right), \bar{d}(x) \geqslant \frac{1}{2} n .
$$

Let $A \subset \Gamma(x), B \subset \bar{\Gamma}(x)$ with $|A|=\left\lfloor\left(n / \log ^{2} n\right)\right\rfloor,|B|=\left\lfloor\frac{n}{2}\right\rfloor$. Let $F=\{\Gamma(x) \cap$ $\left.A: x \in B^{\prime}\right\},\left|B^{\prime}\right|>\frac{n}{3}, B^{\prime} \subset B$. Assume first $|\mathscr{F}|>\frac{n}{3 k}$. Let $C \subset B^{\prime},|C|=\{(n / 3 k)\rfloor$ be such that $\Gamma(y) \cap A \neq \Gamma(z) \cap A$ for $y \neq z \in C$. Consider the graphs $G[\{x\} \cup$ $A \cup Y]$ for $Y \subset C$. If $n \cdot|A|!+1$ of them are pairwise isomorphic, then there are two, say

$$
G\left[\{x\} \cup A \cup Y_{0}\right] \text { and } G\left[\{x\} \cup A \cup Y_{1}\right]
$$

which are isomorphic by an isomorphism π keeping x and the elements of A fixed. Clearly such a π must keep the elements of Y_{0} fixed, hence $Y_{0}=Y_{1}$. It follows that in this case

$$
i(G) \geqslant 2^{\lfloor n / 3 k]} \cdot\left(n \cdot n^{n / \log ^{2} n}\right)^{-1}>2^{n / 4 k}
$$

holds for sufficiently large n. Hence we may assume that there is a sequence $B_{i}: i \leqslant l$ of pairwise disjoint subsets of B such that $\left|B_{i}\right|=k$ and $\Gamma(y) \cap A=\Gamma(z) \cap$ A whenever $y, z \in B_{i}$ for $i<l$, for an l satisfying $k \cdot l>2 c \log n$, i.e. for an $l=\left\lfloor c_{1}(\log n / \log 2)\right\rfloor$ with $c_{1}<1$.

Let $D=U_{i<i} B_{i}$. It now follows that there is an $E \subset A,|E| \geqslant|A|$. $2^{-c_{c}(\log n n \log 2)} \geqslant n^{1-c_{1}} \cdot(\log n)^{-2}$ such that $\Gamma(u) \cap D=\Gamma(v) \cap D$ for $u, v \in E$. As $n^{1-c_{1}} \cdot(\log n)^{-2}>c \log n$ for sufficiently large n, this contradicts the assumptions of the theorem.

Clearly, the above computation can be slightly improved, but we have examples to show that the assumptions of Theorem 2 do not imply $i(G)>$ $2^{(2 n \log k / k)}$.

At present we are unable to extend Theorem 2 to graphs G for which

$$
K_{c \log n, c \log n, c \log n} \neq G, \bar{G} .
$$

Reference

[1] N. Alon, B. Bollobás, Graphs with a small number of distinct induced subgraphs, this issue.

