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by

Paul Erdös

Perhaps the title "Ramanujan and the birth of Probabilistic

Number Theory" would have been more appropriate and personal, but

since Ramanujan's work influenced me greatly in other subjects too, I

decided on this somewhat immodest title .

Perhaps I should start at the beginning and relate how I first

found out about Ramanujan's existence . In March 1931 I found a simple

proof of the following old and well-known

II p < 4 nn
p<n

theorem of Tchebychev :

"Given any integer n, there is always a prime p such that

n < p < 2n ." My paper was not very well written . Kalmar rewrote my

paper and said in the introduction that Ramanujan found a somewhat

similar proof . In fact the two proofs were very similar ; my proof had

perhaps the advantage of being more arithmetical . He asked me to look

it up in the Collected Works of Ramanujan which I immediately read

with great interest . I very much enjoyed the beautiful obituary of

Hardy in this volume [23] . I am not competent to write about much of

Ramanujan's work on identities and on the ti-function since I never

was good at finding identities . So I will ignore this aspect of

Ramanujan's work here and many of my colleagues who are much more

competent to write about it than I will do so . I will therefore write

about Ramanujan's work on partitions and on prime numbers and here too

I will restrict myself to the asymptotic theory .

My paper [7] on Tchebychev's theorem, which was actually my very

first, appeared in 1932 . One of the key lemmas was the proof that

(1)
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In 1939, Kalmar and I independently and almost simultaneously

found a new and simple proof of (1) which comes straight from

Book! We use induction . Clearly (1) holds for n = 2 and 3 and we

will prove that it holds for n + 1 by assuming that it holds for all

integers < n . If n + 1 is even, there is nothing to prove . Thus

assume n + 1 = 2m + 1 . Observe that ( 2m+1 ) < 4m and that ( 2m+1 ) is

a multiple of all primes p satisfying m + 2 < p < 2m + 1 . Now we

evidently have

Rp

	

(2m+1) Bp < 4m Rp < 42m+1
m

p<2m+1

	

p<m+l

	

p<m+l

by the induction assumption .

By more complicated arguments it can be shown that n p < 3 nn

p<n
As is well-known, the Prime Number Theorem is equivalent to

{ II p} 1/n

p<n

+ e as n ->

but it is very doubtful if (2) can be proved by such methods .

I hope the reader will forgive me (a very old man!) for some

personal reminiscences . Denote by n(n) the number primes not

exceeding n . The Prime Number Theorem states that for every e> 0 and

n > n 0 (e)

(1-e) n

	

< ,c(n) < (1+e) n
logn

	

logn

The

(2)

(3)

It was generally believed that for every fixed e > 0, (3) can be

proved by using the elementary methods of Tchebychev but that an

elementary proof is not possible for every

	

In 1937 Kalmar and I

found such an elementary proof . Roughly speaking our proof was based

on the following Lemma : "For every e> 0 there is an integer m

such that for every t satisfying m < t < m2 we have



E µ(n)I < e .t,
n<t

E µ(n) = o(x) .
n~x
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(4)

where µ is the Mobius function ." It is well-known that the Prime

Number Theorem is equivalent to

(5)

Thus if we know the Prime Number Theorem, then a value satisfying (4)

can be found by a finite computation . But without assuming the Prime

Number Theorem, we certainly cannot be sure that such an m can be

found . It is perhaps an interesting fact that such a curious

situation can be found in "normal" mathematics, which has nothing to

do with mathematical logic!

Perhaps an explanation is needed why our paper was never

published . We found our theorem in 1937, and we had a complete

manuscript ready in 1938, when I arrived in the United States . At the

meeting of the American Mathematical Society at Duke University I met

Barkeley Rosser and I learned from him that he independently and

almost simultaneously found our result and in fact he proved it also

for all arithmetic progressions . Thus Kalmar and I decided not to

publish our result and Rosser stated in his paper that we obtained a

special case of his result by the same method . Now it so happened

that Rosser's paper also was never published . This is what happened

to Rosser's paper . At that time he worked almost entirely in Logic

and therefore the paper was probably sent to a logician who had

serious objections to some of the arguments which he perhaps did not

understand completely . Thus Rosser lost interest and never published

the paper . A few years ago when I told Harold Diamond of our work he

thought that the result was of sufficient interest to deserve

publication even now after Selberg and I had found a genuinely
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elementary proof of the Prime Number Theorem (using the so called

fundamental inequality of Selberg .) The manuscripts of Rosser, Kalmar

and myself no longer existed, but Diamond and I were able to

reconstruct the proof which appeared in L'Enseignement Mathématique a

few years ago [5] .

I was immediately impressed when I first saw in 1932 the theorem

of Hardy and Ramanujan [18] which loosely speaking states that almost

all integers have about loglogn prime factors . More precisely, if

g(n) tends to infinity as slowly as we please then the density of

integers n for which

iv(n) - loglogn) > g(n)dloglogn

estimate on the number of integers 4 x having exactly k prime

(6)

is 1, where v(n) is the number of distinct prime factors of n .

The same result holds for Q(n), the number of prime factors of

n,

	

multiple factors counted multiply . The original proof of Hardy

and Ramanujan was elementary but fairly complicated and used an

factors . Landau had such a result for fixed k, and they extended it

for all k .

Hardy and Ramanujan prove by induction that there are absolute

constants k and c such that

kx (loglogx + c ) v-1
xv (x) s logx

	

(v-1)!

	

v

where nv (x) denotes the number of integers n < x which have v distinct

prime factors . As stated above Landau had obtained for fixed v an

asymptotic formula for nv (x) as x and it was a natural question to

ask for an asymptotic formula or at least a good inequality for n v (x)

for every v . In fact Pillai proved that



and later I showed [12] that if

then
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U (x)

	

v-1»	x	(loglogx)

	

for v <, c .loglog xv

	

c logx

	

(v-1)í

loglog x -c'dloglog x < v < loglog x + c'Jloglog x

x (x) -

	

x

	

(loglog x)v-1 as x

	

mv

	

log x

	

(v-1)!

(7)

(8)

holds for every c' > 0 ; so the "critical interval" of values for v is

covered .

I further conjectured that the sequence is unimodal . That is

n1 (x) < n2(x) < . . . lcv (x) > nv+1(x) > nv+2(x) > . . . (9)

holds some v = v(x) . I expected that the main difficulty in proving

(9) will be in the critical interval (7) but it turned out to my great

surprise that I was wrong . The unimodality of itv (x) was proved for

all but the very large values of v, that is for

v < c"(log x)/(loglog x) 2

by Balazard * . Thus only the large values of v remain open . I first

thought that the cases v > c"(log x)/(loglog x) 2 will be easy to

settle but so far no one has been successful . If we put

fv (x) _

	

aaa .< x

	

ii

*Balazard ; to appear in: Séminaire de théorie des nombres de Paris
1987-88, Birkhauser.
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where the summation is extended over all the ai which have v distinct

prime factors, then I showed [12] that fv (x) is unimodal but this is

much easier than (9) .

In fact (8) became obsolete almost immediately . I learned from

Chandrasekharan that Sathe [25] obtained by very complicated but

elementary methods an asymptotic formula for n v (x) for v << loglog x .

Upon seeing this Selberg [26] found a much simpler proof of a stronger

result by analytic methods . Later it turned out that the same method

was used by Turán in his dissertation [28] which appeared only in

Hungarian and was not noticed
*

. Kolesnik and Straus [21] and Hensley

[19] further extended the range of the asymptotic formulas

for R_(x) and currently the strongest results are in a recent paper of

Hildebrand and Tenenbaum [20] .

As Hardy once told me, their

twenty years, but it came to life in 1934 . First Turán proved [27]

that

theorem seemed dead for nearly

E (v(n) - loglog x) 2 < c .x loglog x .

	

(10)
n<x

The proof of (10) was quite simple and immediately implied (6) . Later

(10) was extended by Kubilius and became the classical Turán-Kubilius

inequality of Probabilistic Number Theory . Actually (10) was the

well-known Tchebychev inequality but we were not aware of this because

we had very little knowledge of Probability Theory .

In 1934, Turán also proved that if f(x) is an irreducible

polynomial, then for almost all n, f(n) has about loglogn prime

factors and I proved using the Brun-Titchmarsh theorem that the same

holds for the integers of the form p-1 [8] . A couple of years later

I proved [9], that the density of integers n for which

*See the paper of Alladi in this proceedings for more on this .



v(n) > loglog n is 1/2 . Of course (8) and the theorem of Hardy-

Ramanujan immediately implies this but (8) was proved only much later

and my original proof is much simpler and does not use the Prime

Number Theorem . I used Brun's method and the Central Limit Theorem

for the Binomial distribution . I did not at that time know the

Central Limit Theorem, but in the Binomial case this was easy . At

that time I could not have formulated even the special case of the

Erdös-Kac theorem due to my ignorance of Probability .

All these questions were cleared up when Kac and I met in 1939 in

Baltimore and Princeton . All this is described in the excellent two

volume book of Elliott [6] on Probabilistic Number Theory but perhaps

I can be permitted to repeat the story in my own words : "I first met

Kac in Baltimore in the Winter of 1938-39 . Later in March 1939, he

lectured on additive number theoretic functions . Among other things

he stated the following conjecture which. a few hours later became the

Erdös-Kac Theorem . Suppose f(n) is an additive arithmetic function

for which f(p) = f(p a ) for every a, (this is not essential and is
2only assumed for convenience), If(p)I < C and E f (
P
p) diverges to

P
. Furthermore, put

A(x) = E f( P ) and B(x) = E f	2(P)

p 4x P

	

p<x P

Then the density of integers n for which f(n) < A(n) + cVB(n) is

2
G(c) = 1 Jce-u /2du .

J2n

He said he could not prove this but if we truncate f(n) and put

fk (n) = E f(p), then as k
pln, ptk

7

which fk(n) < A(k) + cVB(k) approaches G(c) .

I was for a long time cooking for a theorem like the conjecture

of Kac but due to my lack of knowledge of Probability Theory I could

density of dk (c) of integers for
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not even formulate a theorem or conjecture like the above . But

already during the lecture of Kac I realised that by Brun's method I

can deduce the conjecture of Kac from his theorem . After his lecture

we immediately got together . Neither of us completely understood what

the other was doing, but we realised that our joint work will give the

theorem and to be a little impudent and conceited, Probabilistic

Number Theory was born ." This collaboration is a good example to show

that two brains can be better than one, since neither of us could have

done the work alone . Many further theorems were proved by us and

others in this subject (e .g . the Erdös-Wintner Theorem which is based

on Erdös-Kac) , but I have to refer to the book of Elliott for more

information . My joint papers with Kac [13] as well as with Wintner

[17] appeared in the American Journal of Mathematics .

Let me state one of my favorite problems here for which our

probabilistic technique does not apply . Denote by P(n) the largest

prime factor of n . Is it true that the density of integers for

which P(n+l) > P(n) is 1/2? The reason that the probabilistic

approach does not work is that P(n) depends on a single prime factor

and the same will hold if instead of P(n) we consider

A(n) = E P i (see my joint papers with Alladi [2], [3], for
P i ln

connections between A(n) and P(n)) . Pomerance and I have some

weaker results than the conjecture [16], but we both feel that the

problem is unattackable at present .

Note that A(n) cannot have a normal order because the order of

magnitude of A(n) for almost all n is determined by P(n) (see [2]) and

log P(n) has a distribution function . In this context we point out

that Elliott has shown (see [6], Ch . 15) that if f(n) is additive and
l+ef(p) > (log p)

	

, then f cannot have a normal order ; so A(n) cannot

have a normal order . It should be possible to show that by neglecting



k(1-e)

	

k(l+e)e e

	

<
Pk(n)

< ee
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a set of density zero the inequality A(n+l) > A(n) will hold if and

only if P(n+l) > P(n) .

Before I leave this subject I want to state one of my favorite

theorems which was proved in 1934 and which is a strengthening of the

original theorem of Hardy and Ramanujan : To every e and S > 0

there is a k0 (e,ő) such that the lower asymptotic density of

integers n for which for every k > k0 (e,(5)

is >(1-ő) . Here pk (n) is the kth smallest prime factor of n, and

the inequalities are considered vacuously true for integers n having

fewer than k0 prime factors . The proof of this result is not very

difficult .§

Next I come to highly composite numbers . Recall that an

integer n is called highly composite if for every m < n we have

d(m) < d(n), where d is the divisor function . Ramanujan wrote a

long paper [24] on this subject . Hardy rather liked this paper but

perhaps not unjustly called it nice but in the backwaters of

mathematics . Alaoglu and I wrote a long paper on this subject [1]

sharpening and extending many of the results of Ramanujan . If we

denote by D(x) the number of highly composite numbers not exceeding

x, then I proved that [11] there exists a c > 0 such that

D(x) > (logx) 1+c for x > x0 . Our results were extended by J . L

Nicolas, and later Nicolas and I wrote several papers on this and

related topics .

Ramanujan had a very long manuscript on highly composite numbers

but some of it was not published due to a paper shortage during the

First World War . Nicolas has studied this unpublished manuscript of

§see my paper, "Some unconventional problems in Number Theory",
Asterique, 61 (1979), p . 73-82 .



Ramanujan and has written about this in an appendix to this paper .

Ramanujan's paper contains many clever elementary inequalities . The

reason I succeeded in obtaining D(x) > (log x) 1+c which is better than

Ramanujan's inequality was that I could use Hoheisel's result on gaps

between primes which was not available during Ramanujan's time .

Let Ul < U2 < U3 < . . . be the sequence of consecutive highly

composite numbers . One would expect that perhaps

Uk+l - Uk < Uk/(log Uk) e

but I could never prove this and in fact Nicolas does not belive that

this is true . As far as I know

D(x) < (log x) c'

and that for infinitely many n

1 0

is not yet known . All these problems connect with deep questions on

diophantine approximations and so, although these problems are not

central, they are not entirely in the backwaters of mathematics!

Ramanujan in his paper on highly composite numbers obtained upper

and lower bounds for dk(n), the kth iterate of d(n) . If we denote

by 1,2,3,5,8, . . ., the sequence of Fibonacci numbers fl,f2,f3, . .,

then Katai and I proved [14] that for every n > n0 (k,e)

dk (n) < exp{exp {(f1 + e)loglogn }),

	

k > 2
k

dk (n) > exp{exp{(f - e)loglogn }),

	

k > 2
k

which is a fairly satisfactory result . We further conjectured that



for some constant ck > 0,

1 1

E
dk (n) _ (ck + 0(1»x log (k) x,

	

k > 2
n

where log(k)(x) is the kth iterate of

the logarithm . We could only prove this for k < 4 [15] . For

k = 2 this was first proved by Bellman and Shapiro . Finally Katai

and I proved that if h(n) is the smallest integer for which

dh ( n )(n) = 2, then

h(n) << logloglog n

for every n, but that for infinitely many n

h(n) > c logloglog n, some c > 0 .

We could not obtain an asymptotic formula or even a good inequality

for

	

E h(n) .
h<x
Ramanujan investigates the iterates of d(n) only superficially

perhaps to save space . Neither he or anybody else returned to this

problem until Katai and I settled it to some extent .

Now finally I have to talk about partitions . Hardy and Ramanujan

(and independently Uspensky) found an asymptotic formula for p(n),

the number of unrestricted partitions of n . They proved that

ecJn
p(n) ~

	

where c = 7V273 (11)
4nV3

In fact Hardy and Ramanujan proved a good deal more ; they obtained a

surprisingly accurate but fairly complicated asymptotic expansion

for p(n) which in fact could be used to calculate p(n) . Later,

Lehmer proved that the series of Hardy and Ramanujan diverges and

Rademacher obtained a convergent series for p(n) . In 1942, I found

an elementary but very complicated proof [l0] of the first term of the
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asymptotic formula of Hardy and Ramanujan . My proof was based on the

simple identity

np(n) _ ~ ~ a(v)p(n-kv),

	

(12)
k v

where a(v) is the sum of the divisors of v . I showed that (12)

implies (11) by fairly complicated Tauberian arguments which show some

similarity to some of the elementary proofs of the Prime Number

Theorem . This was perhaps an interesting tour-de-force but no doubt

the analytic proof of Hardy and Ramanujan was both simpler and more

illuminating . In fact, their proof later developed into the circle

method of Hardy and Littlewood which was and is one of our most

powerful tools in additive number theory .

I think my most important contribution to the theory of

partitions is my joint work with Lehner where we investigate the

statistical theory of partitions . Using the asymptotic formula of

Hardy-Ramanujan the sieve of Eratosthenes and the simplest ideas

involving 'Brun's method' we obtain asymptotic formulas for the number

of partitions of n where the larget summand is less than

Jnlogn + cdn .Details on this can be found in the book by Andrews [4]

on the Theory of Partitions . These problems are still very much

"alive" and I have some recent joint work on this with Dixmier and

Nicolas and with Szalays .

Some recent work of Ivic and myself (which is not yet published

and will appear in the Proceedings of the 1987 Budapest Conference on

Number Theory) leads us to the following conjecture : "The number of

distinct prime factors in the product

	

II p(n) is unbounded as
n<x

x +

	

Schinzel proved this conjecture and Wirsing improved the

result which will soon appear in their joint paper . In other words,

they proved that the integers p(n) cannot all be composed by a fixed

finite set of primes . The proof is not at all trivial and I think



Ramanujan would have been pleased with this result . No doubt much

more is true and presumably

v( II p(n» /x -> m as x ->
n<x

but at the moment this seems to be beyond our reach .

Unfortunately I never met Ramanujan . He died when I was seven

years old, but it is clear from my papers that Ramanujan's ideas had a

great influence on my mathematical-development . I collaborated with

several Indian mathematicians . S . Chowla, who is a little older than

I, has co-authored many papers with me on Number Theory and I also

have several joint papers with K . Alladi on number-theoretic

functions . I should say a few words about my connections with

Sivasankaranarayana Pillai whom I expected to meet in 1950 in

Cambridge, U .S .A ., at the International Congress of Mathematicians .

Unfortunately he never arrived because his plane crashed near Cairo .

I first heard of Pillai in connection with the following result which

he proved : Let f(n) denote the number of times you have to iterate

Euler's function $(n) so as to reach 2 . Then, there exists

constants c l , c2 such that

logn
log3 - c l < f(n) <

log2 + c 2 .

Shapiro rediscovered these results and also proved that f(n) is

essentially an additive function . I always wanted to prove that

f(n)/logn has a distribution function . In other words the density of

integers n for which f(n) < c .logn exists for every c . I could

get nowhere with this simple and attractive question and could not

even decide whether there is a constant c such that for almost all

n, f(n)/logn + c .

1 3
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Denote by g(x) the number of integers m < x for which

~(n) = m is solvable . Pillai proved that g(x) = o(x) and I proved

that for every k and e > 0

logx(loglogx)k < g(x) < (logx) • (logx) E ,

holds for sufficiently large x . Subsequently, R . R . Hall and I

strengthened these inequalities and currently the best results on

g(x) are due to Maier and Pomerance [22] . They proved that there is

an absolute constant c for which

g(x) _

	

x e (c+o(1)(logloglogx) 2 .
logx

We are very far from having a genuine asymptotic formula for g(x)

and it is not even clear whether such an asymptotic formula exists . I

conjectured long ago that

lim g(2x) = 2 .
g (x)x~_

This is still open, but might follow from the work of Maier and

Pomerance .

Pomerance, Spiro and I have a forthcoming paper on the iterations

of the ~ function but many unsolved problems remain . These problems

on the iterations of arithmetic functions are certainly not central

but I have to express strong disagreement with the opinion of

Bombieri, a great mathematician, who said these problems are

absolutely without interest .

Perhaps the most important work of Pillai was on Waring's

problem, namely on the function g(n), which is the smallest integer

such that every integer is the sum of g(n) or fewer nth-powers .
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APPENDIX : On Composite Numbers

By

J . L . Nicolas

Highly composite numbers n are positive integers satisfying

d(n) > d(m) for all m < n,

	

(1)

where d is the divisor function . Srinivasa Ramanujan studied highly

composite numbers in great detail and his long paper [3] is quite

famous . But there was much work on highly composite numbers and

related topics that Ramanujan did not publish . During his centennial

in December 1987, the first published copy [2] of his Lost Notebook

and other unpublished papers was released and in this impressive

volume a manuscript of Ramanujan on highly composite numbers

(previously unpublished) is included (pages 280-308) . It is to be

noted, however, that at the top of page 295 of [2] the words - "Middle

of another paper" is not handwritten by Ramanujan . A short analysis

of this manuscript on highly composite numbers is given in [1] p . 238-

239 .

The table on page 280 of [2] is not a list of highly composite

numbers . This table almost coincides with the list of largely

composite numbers n which satisfy the weaker inequality

d(.n) > d(m) for all m 4 n .

	

(2)

Note the slight difference between (1) and (2) . There are only four

largely composite numbers which were omitted by Ramanujan in this

table, namely, 4200, 151200, 415800, 491400 . Also, as J . P . Massias

has pointed out, the number 15080 in this table is not largely

composite .



interesting results on a(n), -the sum of the divisors of n .

context we point out a result due to Robin [4] that a(n) 6 ey nloglogn

for n a 5041 . Here y is Euler's constant . More precisely he showed

that

where

In this unpublished manuscript Ramanujan also has some very

)

	

< eyexp { 2(1-J2) + c + 0 (	_1	)} .,

	

(3)NloglogN

	

2dx log x

	

dx log x

c= y+ 2- log 4 n .

In (3), N is a collossaly abundant number of parameter x and for such

n we have

log N =

	

I log p + 0(Jx) = x + 0 (Jx log 2 x)

	

(4)
ptx
p=prime

under the assumption of the Riemann Hypothesis . Using (4) we may

rewrite (3) as
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In this

a(N)	 < ey{l + 2(1-V-2) + c + 0 (

	

1	) } .

	

(5)
NloglogN

	

dlogN loglogN

	

VlogN (loglogN) 2

Ramanujan wrote down a similar formula about seventy years earlier

with the notation E_ 1 (N) for the maximal order of a(N)N	(see [2],

p . 303) :

lim (E -1 (N) - ey loglog N) ,/logN < e y (2d2 + y - log 4n) .

	

(6)

Unfortunately (5) and (6) do not agree ; it seems that in formula (382)

of Ramanujan ([2], p. 303) the sign of the term 2(d2-1)/J1ogN is wrong

and so the right hand side of (6) should read

the wrong sign!

ey( y-log 4n + 2(2-J2)) .

The wrong sign seems to come from Ramanujan's analysis of his formula

(377) of [2] . As Ramanujan explains at the beginning of §71, p . 302

of [2], the term (logN) 1/2 - s /loglogN arises from four terms of

formula (377) and in formula (379) the coefficient of this term has



In the same manuscript Ramanujan has a very nice estimation of

the maximal order of a(n)/ns for all s, which is not at all easy to

obtain . This result of Ramanujan on the maximal order of

a(n)/ns for s # 1 under the assumption of the Riemann Hypothesis is

new (and has not yet been rediscovered!) and it will definitely be

worthwhile to look into this further . I hope to do this on a later

occasion .
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