2022. 11. 14. 10:15 - 2022. 11. 14. 11:15
Rényi, Nagyterem + Zoom
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Algebra szeminárium
Leírás
Abstract:
Given an $n \times n$ matrix with integer entries in the range $[-h,h]$, how close can two of its distinct eigenvalues be?
By an explicit construction using directed graphs, we improve the previously known upper bound on this gap from $h^{-O(n)}$ to $h^{-\frac{n^2}{16} + o(n^2)}$.
Up to a constant in the exponent, this agrees with the known lower bound.
The result is relevant for worst-case analysis of algorithms for diagonalization of integer matrices.
This is joint work with Zeph Landau, Jamie Pommersheim, and Nikhil Srivastava.
Zoom link: https://us06web.zoom.us/j/88002526951?pwd=ZlhlWVpWbTRScEZuVW1USjJJWXgzQT09
Meeting ID: 880 0252 6951
Passcode: 233827