2023. 04. 20. 12:30 - 2023. 04. 20. 13:45
             Rényi, Nagyterem + Zoom
           -
             -
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Extremális halmazrendszerek szeminárium
          Leírás
Abstract:
Let H_k^r be an r-uniform hypergraph with r+1 vertices and k edges where 3 ≤ k ≤ r+1.
It is easy to see that such a hypergraph is unique up to isomorphism.
The upper bound on its Turán density is (k-2)/r.
In the case k=3, Frankl and Füredi (1984) used a geometric construction to prove lower bound 2^{1-r}.
We use classical results from order statistics going back to Rényi (1953) and a geometric construction to prove a lower bound of order r^{-(1+1/(k-2))}.
The lecture can be followed by zoom if necessary:
- Zoom link: https://us06web.zoom.us/j/89547528463?pwd=Z0ZiU1NXZkpyY2NNUy9PYXptY0JuZz09
 - Meeting ID: 895 4752 8463
 - Passcode: 890941
 
The recording of the lecture can be found at the following address: