2018. 04. 25. 14:00 - 2018. 04. 25. 16:00
Szeged, Bolyai Intézet, Bolyai Épület, I. emelet, Riesz terem, Aradi Vértanúk tere 1.
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Külsős
-
-

Leírás

SZTE, TTIK, Bolyai Intézet,  Sztochasztika szeminárium

Abstract. We consider sample path properties of the solution to the stochastic heat equation driven by a Lévy space-time white noise. When viewed as a stochastic process in time with values in an infinite-dimensional space, the solution is shown to have a càdlàg modification in fractional Sobolev spaces of index less than -d/2. Concerning the partial regularity of the solution in time or space when the other variable is fixed, we determine critical values for the Blumenthal-Getoor index of the Lévy noise such that noises with a smaller index entail continuous sample paths, while Lévy noises with a larger index entail sample paths that are unbounded on any non-empty open subset.

This is joint work with Thomas Humeau and Robert Dalang (EPFL).