2024. 04. 25. 12:15 - 2024. 04. 25. 13:45
Rényi Intézet, Kutyás terem
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Extremális halmazrendszerek szeminárium
Leírás
Bollob\'as proved that for every $k$ and $\ell$ such that $k\mathbb{Z}+\ell$ contains an even number, an $n$-vertex graph containing no cycle of length $\ell \bmod k$ can contain at most a linear number of edges.
The precise (or asymptotic) value of the maximum number of edges in such a graph is known for very few pairs $\ell$ and $k$.
We precisely determine the maximum number of edges in a graph containing no cycle of length $0 \bmod 4$.
This is joint work with Ervin Gy\H{o}ri, Binlong Li, Nika Salia, Kitti Varga and Manran Zhu.
ZOOOOMMM!
Invite Link https://us06web.zoom.us/j/82873195695?pwd=lPy6CDPLhoUNvwyrBjvwmm4EkHuk9d.1
828 7319 5695
Passcode 809405