2020. 10. 30. 10:30 - 2020. 10. 30. 11:30
Online, Zoom webinar
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Algebrai geometria és differenciáltopológia szeminárium

Leírás

Abstract: Using ideas from geometric group theory we provide a novel approach to Green's Conjecture on syzygies of canonical curves. Via a strong vanishing result for Koszul modules we deduce that a general canonical curve of genus g satisfies Green's Conjecture when the characteristic is zero or at least (g+2)/2. Our results are new in positive characteristic (and answer positively a conjecture of Eisenbud and Schreyer), whereas in characteristic zero they provide a different proof for theorems first obtained in two landmark papers by Voisin. Joint work with Aprodu, Papadima, Raicu and Weyman.

For Zoom access please contact Andras Stipsicz (stipsicz.andras[a]renyi.hu).