2021. 10. 28. 12:15 - 2021. 10. 28. 13:45
Rényi, Nagyterem + Zoom
-
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Extremális halmazrendszerek szeminárium
Leírás
Abstract:
The Turán problem asks for the largest number of edges in an $n$-vertex graph not containing a graph $H$ as a subgraph. Edge-ordered graphs are simple graphs that have a linear order on its edges. The Turán number of an edge-ordered graph $H$ is the maximum number of edges in an edge-ordered graph on $n$ vertices that avoids $H$.
In this talk, we study the Turán problem for edge-ordered graphs, in particular, edge-ordered paths on 6 vertices. Then we prove dichotomy result on the extremal function for edge-ordered paths and further extend it to connected edge-ordered graphs.
You can also join the meeting in Zoom:
https://zoom.us/j/97314411772?pwd=b0kwMVRrQjY3azQ5aUk5MlF2TnRjQT09
Meeting ID: 973 1441 1772
Passcode: 473689