2021. 04. 15. 14:15 - 2021. 04. 15. 15:30
Online, Zoom webinar
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Kombinatorika szeminárium

Leírás

Abstract: Popielarz, Sahasrabudhe and Snyder in 2018 proved that maximal
$K_{r+1}$-free graphs with
$(1-\frac{1}{r})\frac{n^2}{2}-o(n^{\frac{r+1}{r}})$ edges contain a
complete $r$-partite subgraph on $n-o(n)$ vertices. This was very
recently extended to odd cycles in place of $K_3$ by Wang, Wang, Yang
and Yuan. We further extend it to some other 3-chromatic graphs, and
obtain some other stability results along the way.

The link is the usual

https://zoom.us/j/2961946869