2019. 01. 07. 10:15 - 2019. 01. 07. 11:15
MTA Rényi Intézet, nagyterem
-
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Algebra szeminárium
Leírás
Bezrukavnikov and Kaledin showed that convergent deformation
quantizations of symplectic varieties over a perfect field of positive
characteristic give rise to sheaves of Azumaya algebras. We
investigate the structure of the convergent quantization of shifted
symplectic derived stacks, especially of the 1-shifted cotangent
bundle S of a smooth scheme X over a perfect field of positive
characteristic. We show that the quantization is an E2-algebra over
the Frobenius twist S' of the 1-shifted cotangent bundle which
restricted to the zero section X' -> S' is weakly E2-Morita equivalent
to the structure sheaf of the Frobenius twist X' of X.