2018. 02. 14. 14:00 - 2018. 02. 14. 16:00
             Szeged, Bolyai Intézet, Bolyai Épület, I. emelet, Riesz terem, Aradi Vértanúk tere 1.
           -
             -
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Külsős
          
           -
             -
          Leírás
SZTE, TTIK, Bolyai Intézet, Sztochasztika szeminárium
Abstract. We investigate the moment asymptotics of the solution to the stochastic heat equation driven by a (d+1)-dimensional Lévy space-time white noise. Unlike the case of Gaussian noise, the solution typically has no finite moments of order 1+2/d or higher. Intermittency of order p, that is, the exponential growth of the p-th moment as time tends to infinity, is established in dimension d=1 for all values p in (1,3), and in higher dimensions for some p in (1,1+2/d). In some special cases we also investigate the almost sure properties of the solution.