2017. 11. 23. 10:15 - 2017. 11. 23. 11:15
BME H-306
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Külsős
-
-

Leírás

The prices and hedjing strategies in the real financial  market models are often described by fully  nonlinear versions of the standard Black-Sholes equation. We concentrate on two classes of models: first, nonlinear Black-Sholes equations in which the volatility depends on  second space derivatives of the price(=solution) and then on regime-switching models described by systems of semilinear parabolic equations with exponential nonlinearities. The following characteristic  properties of these parabolic problems are typical: unbounded domain, boundary degeneration, maximum-minimum principle and nonnegativity preservation. We develop effective discretizations that reproduce these properties.