2023. 12. 12. 14:15 - 2023. 12. 12. 15:30
Rényi, Nagyterem + Zoom
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Számelmélet szeminárium

Leírás

Abstract:

In order to reprove an old result of Rédei's on the number
of directions determined by a set of cardinality $p$ in
$\mathbb{F}_p^2$, Somlai proved that
the non-constant polynomials over the field $\mathbb{F}_p$ whose range sums are
equal to $p$ are of degree at least $\frac{p-1}{2}$. Here we characterise all
of these polynomials having degree exactly $\frac{p-1}{2}$, if $p$ is large
enough. As a consequence, for the same set of primes we re-establish the
characterisation of sets with few determined directions due to Lov\'asz and
Schrijver using discrete Fourier analysis. Joint work with Gergely
Kiss, Zoltán Lóránt Nagy, Gábor Somlai.

 

 

For Zoom access please contact András Biró (biro.andras[a]renyi.hu).