2020. 02. 11. 10:00 - 2020. 02. 11. 11:00
Szeged, Bolyai Intézet, Bolyai Épület, I. emelet, Riesz terem, Aradi vértanúk tere 1.
-
-
-
-
Esemény típusa: szeminárium
Szervezés: Külsős
-
-

Leírás

University of Szeged, Bolyai Institute, Analysis seminar

Abstract. The effect algebra is the collection of positive semi-definite, non-expansive linear operators on a fixed complex Hilbert space. In this talk, we consider mappings on the effect algebra that preserve the binary relation called coexistency in both directions. I will explain the general form of such mappings under the additional assumption of continuity and finite dimensionality, but without assuming bijectivity.
This is joint work with Peter Semrl.