2018. 11. 15. 12:15 - 2018. 11. 15. 13:45
             MTA Rényi Intézet, nagyterem
           -
             -
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Extremális halmazrendszerek szeminárium
          Leírás
We address the following rainbow Ramsey problem: For posets P, Q what is the smallest
number n such that any coloring of the elements of the Boolean lattice $B_n$ either admits
a monochromatic copy of P or a rainbow copy of Q. We consider both weak and strong
(non-induced and induced) versions of this problem. We also investigate related problems
on (partial) k-colorings of $B_n$ that do not admit rainbow antichains of size k.
Joint work with Fei-Huang Chang, Dániel Gerbner, Wei-Tian Li, Abhishek Methuku,
Balázs Patkós and Máté Vizer.